登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書

『簡體書』氮化碳基半导体光解水制氢

書城自編碼: 4157008
分類:簡體書→大陸圖書→工業技術一般工业技术
作者: 刘学成、姚斌、祁凝、许晗宇 著
國際書號(ISBN): 9787122487469
出版社: 化学工业出版社
出版日期: 2025-08-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 140.8

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
罗马元老院与人民新版 一部古罗马史 汗青堂丛书022
《 罗马元老院与人民新版 一部古罗马史 汗青堂丛书022 》

售價:HK$ 140.8
陈舜臣近代史三部曲 甲午战争 太平天国兴亡录 走向辛亥
《 陈舜臣近代史三部曲 甲午战争 太平天国兴亡录 走向辛亥 》

售價:HK$ 249.7
希腊精神——一部文明史(二十世纪人文译丛)
《 希腊精神——一部文明史(二十世纪人文译丛) 》

售價:HK$ 85.8
世界文明史(上)
《 世界文明史(上) 》

售價:HK$ 209.0
长沙走马楼西汉简牍 文字编
《 长沙走马楼西汉简牍 文字编 》

售價:HK$ 424.8
涅瓦河畔的遐思——列宾艺术特展(汉英对照)(国家博物馆“国际交流系列”丛书)
《 涅瓦河畔的遐思——列宾艺术特展(汉英对照)(国家博物馆“国际交流系列”丛书) 》

售價:HK$ 587.6
世界在前进
《 世界在前进 》

售價:HK$ 81.4
文以载道:唐宋四大家的道论与文学
《 文以载道:唐宋四大家的道论与文学 》

售價:HK$ 88.5

內容簡介:
This book systematically explores carbon nitride-based semiconductors for photocatalytic hydrogen production through water splitting. Beginning with fundamental concepts of hydrogen generation, it details modifications to pure g-C3N4 and interfacial engineering designs before examining various composite materials: CeO2/g-C3N4 nanocomposites demonstrate enhanced charge separation, while CoO nanoparticle integration improves visible-light absorption. The text analyzes N-doped ZnO/g-C3N4 heterojunctions, MnO2-loaded architectures for oxidative stability, and oxygen-deficient LaVO4/g-C3N4 systems. Advanced configurations include Co-C3N4/BiPO4 dual-cocatalysts, atomically dispersed Co-N4 sites in 2D frameworks, and B/P-doped variants for bandgap modulation, concluding with molten-salt synthesized Fe@C3N4 nanosheets. Each systems synthesis, characterization, mechanistic pathways, and hydrogen evolution performance are rigorously evaluated, culminating in forward-looking perspectives for next-generation photocatalyst development.
關於作者:
刘学成,副教授/博士(后),化工系主任,硕士研究生导师(材料与化工(专硕)和环境工程(学硕))。2017年毕业于中国科学院大学化学工程专业获工学博士学位,同年进入重庆工商大学环境与资源学院化工系工作至今。2022年?2023年,日本先锐材料研究所访问学者,导师:KazunariDomen教授;中国化工学会会员,重庆市化学化工学会会员。Sep.Purif.Technol.,Int.J.HydrogenEnerg.等期刊审稿专家。发表SCI学术论文10余篇,授权发明专利2项,重庆市化学化工学会技术进步成果一等奖1项,出版专著2部。承担《化工原理》《高等物理化学》《碳中和技术与管理》等教学课程。
目錄
Chapter 1 Introduction 1
1.1 Hydrogen evolution 1
1.2 Modification of pure g-C3N4 2
Reference 5
Chapter 2 CeO2/g-C3N4 nanocomposite 7
2.1 Background 7
2.2 Preparation of CeO2/g-C3N4 composite 8
2.3 Characterization of CeO2/g-C3N4 composite 9
2.3.1 XRD of CeO2/g-C3N4 composite 9
2.3.2 TEM of CeO2/g-C3N4 composite 10
2.3.3 XPS of CeO2/g-C3N4 composite 12
2.3.4 UV-vis absorption and PL spectra of CeO2/g-C3N4 composite 15
2.4 Photocatalytic H2 generation testing of CeO2/g-C3N4 composite 16
2.4.1 Hydrogen production efficiency 16
2.4.2 Charge separation and transfer performance 19
2.4.3 Photocatalytic H2 evolution mechanism 20
2.5 Conclusion 21
Reference 22
Chapter 3 In-situ growing of CoO nanoparticles on g-C3N4 composite 27
3.1 Background 27
3.2 Preparation of CoO/g-C3N4 composite 28
3.3 Characterization of CoO/g-C3N4 composite 29
3.3.1 XRD of CoO/g-C3N4 composite 29
3.3.2 TEM of CoO/g-C3N4 composite 30
3.3.3 XPS of CoO/g-C3N4 composite 31
3.3.4 UV-vis absorption and PL spectra of CoO/g-C3N4 composite 33
3.4 Photocatalytic H2 generation testing of CoO/g-C3N4 composite 35
3.4.1 Hydrogen production efficiency 35
3.4.2 Charge separation and transfer performance 37
3.4.3 Mechanism of hydrogen production 39
3.5 Conclusion 40
Reference 40
Chapter 4 ZnO/g-C3N4 with N dopant 44
4.1 Background 44
4.2 Preparation of ZnO/g-C3N4 with N dopant 45
4.3 Characterization of ZnO/g-C3N4 with N dopant 46
4.3.1 TEM of ZnO/g-C3N4 with N dopant 46
4.3.2 XRD of ZnO/g-C3N4 with N dopant 47
4.3.3 XPS of ZnO/g-C3N4 with N dopant 48
4.3.4 UV-vis absorption and PL spectra of ZnO/g-C3N4 with N dopant 53
4.4 Photocatalytic activity testing of ZnO/g-C3N4 with N dopant 54
4.4.1 Hydrogen production and NO removal efficiency 54
4.4.2 Charge separation and transfer performance 57
4.4.3 Mechanism of enhanced photocatalytic activity 59
4.5 Conclusion 60
Reference 61
Chapter 5 Manganese dioxides with different exposed crystal plane supported on g-C3N4 65
5.1 Background 65
5.2 Preparation of MnO2/g-C3N4 composite 66
5.3 Characterization of MnO2/g-C3N4 composite 67
5.3.1 XRD of MnO2/g-C3N4 composite 67
5.3.2 TEM of MnO2/g-C3N4 composite 68
5.3.3 UV-vis absorption and PL spectra of MnO2/g-C3N4 composite 69
5.3.4 XPS and EPR of MnO2/g-C3N4 composite 71
5.4 Photocatalytic H2 generation testing MnO2/g-C3N4 composite 75
5.4.1 Hydrogen production efficiency 75
5.4.2 Charge separation and transfer performance 76
5.4.3 Mechanism of hydrogen production 78
5.5 Conclusion 79
Reference 80
Chapter 6 LaVO4/g-C3N4 composite with oxygen defect 82
6.1 Background 82
6.2 Preparation of LaVO4/g-C3N4 composite 83
6.3 Characterization of LaVO4/g-C3N4 composite 84
6.3.1 XRD of LaVO4/g-C3N4 composite 84
6.3.2 TEM of LaVO4/g-C3N4 composite 85
6.3.3 XPS of LaVO4/g-C3N4 composite 87
6.3.4 UV-vis absorption and PL spectra of LaVO4/g-C3N4 composite 91
6.4 Photocatalytic water splitting testing 93
6.4.1 Water splitting efficiency 93
6.4.2 Charge separation and transfer performance 95
6.4.3 Mechanism of water splitting 96
6.5 Conclusion 98
Reference 99
Chapter 7 Co-C3N4/BiPO4 composite 101
7.1 Background 101
7.2 Preparation of Co-C3N4/BiPO4 composite 102
7.3 Characterization of Co-C3N4/BiPO4 composite 103
7.3.1 XRD of Co-C3N4/BiPO4 composite 103
7.3.2 TEM of Co-C3N4/BiPO4 composite 104
7.3.3 XPS of Co-C3N4/BiPO4 composite 106
7.3.4 UV-vis absorption and PL spectra of Co-C3N4/BiPO4 composite 109
7.4 Photocatalytic water splitting testing Co-C3N4/BiPO4 composite 111
7.4.1 Water splitting efficiency 111
7.4.2 Charge separation and transfer performance 113
7.4.3 Mechanism of hydrogen production 115
7.5 Conclusion 116
Reference 116
Chapter 8 Atomic Co-N4 sites in 2D polymeric carbon nitride 119
8.1 Background 119
8.2 Preparation of Atomic Co-N4 sites in 2D polymeric carbon nitride 120
8.3 Characterization of Co1@2DPCN 121
8.3.1 XRD of Co1@2DPCN 121
8.3.2 FT-IR, BET, SEM and TEM of Co1@2DPCN 123
8.3.3 HAADF-STEM, EXAFS, XPS of Co1@2DPCN 126
8.3.4 Optical and electrochemical properties assessment 131
8.4 Photocatalytic performance 132
8.4.1 Photocatalytic H2 generation testing 132
8.4.2 Density functional theory calculations 135
8.5 Conclusion 138
Reference 138
Chapter 9 B and P doped g-C3N4 142
9.1 Background 142
9.2 Facile synthesis of B and P doped g-C3N4 143
9.3 Characterization of B and P doped g-C3N4 143
9.3.1 XRD, SEM and TEM of B and P doped g-C3N4 143
9.3.2 UV-vis absorption 146
9.3.3 PL spectra of B and P doped g-C3N4 148
9.3.4 XPS of B and P doped g-C3N4 149
9.4 Photocatalytic activity testing 152
9.4.1 Hydrogen production efficiency 152
9.4.2 Charge separation and transfer performance 155
9.4.3 Enhanced photocatalytic mechanism 158
9.5 Conclusion 159
Reference 159
Chapter 10 Molten salt preparation of Fe@C3N4 nanosheets 161
10.1 Background 161
10.2 Preparation of Fe@C3N4 162
10.3 Characterization of Fe@C3N4 163
10.3.1 XRD, SEM and TEM of Fe@C3N4 163
10.3.2 UV-vis spectroscopy of Fe@C3N4 165
10.3.3 PL spectroscopy of Fe@C3N4 166
10.3.4 XPS of Fe@C3N4 167
10.4 Photocatalytic activity testing of Fe@C3N4 170
10.4.1 Hydrogen production efficiency 170
10.4.2 EPR, DFT and charge separation and transfer performance 172
10.4.3 Mechanism of hydrogen production 175
10.5 Conclusion 176
Reference 176
內容試閱
前言
如今,全球环境问题和能源危机越来越引起人们的高度重视。众所周知,煤炭和石油是不可再生能源,随着社会的高速发展,石油的开采量也日益增加,从而导致全球的石油储存量大幅度减少,我国面临着能源转型的挑战。氢能,不仅具有良好的可再生性和燃烧性等优异特点,而且其来源广泛,可以大量储存。利用光催化技术分解水产生氢气,既不会产生二次污染,又可以通过半导体催化剂使太阳能转化为氢能。
作为非金属半导体催化材料,氮化碳在光催化制氢技术领域具备极好的潜在发展前景和商业化应用前景,但未经改性的氮化碳存在比表面积小、光生载流子(电子和空穴)分离和迁移速率慢、光吸收范围较窄、电子-空穴对容易复合等缺点,导致其光催化分解水产氢的性能不理想。本文针对氮化碳光吸收利用率低和光生电子与空穴复合率高等关键问题,通过对氮化碳掺杂改性和构建异质结等方法来提高光解水产氢的效率,并分析了氮化碳基材料的光解水产氢机理。
本书凝聚了笔者研究团队的最新成果,系统阐述了氮化碳基光催化材料的制备方法、改性策略及其在光解水制氢中的应用。希望能够为从事光催化分解水制氢研究人员提供较为详尽的氮化碳基材料的制备技术及其在光催化分解水的应用,为光催化分解水的研究提供一定科学依据和技术支撑。
全书共10章,刘学成负责撰写第1~3章(10万字),姚斌负责撰写第4~6章(10万字),祁凝负责撰写第7~8章(5万字),许晗宇负责撰写第9~10章(5万字)。感谢重庆工商大学学术著作出版基金资助。全书由刘学成统稿。由于研究领域的快速发展及编者水平所限,书中难免存在疏漏之处,恳请学界同仁不吝指正。
著者

Preface
Nowadays, global environmental issues and energy crises are attracting significant attention worldwide. As fundamental non-renewable energy sources, coal and oil face depleting reserves due to accelerated extraction rates driven by rapid societal development. In this context, China faces growing challenges in energy transition. Hydrogen energy emerges as a promising solution, possessing high renewability potential, exceptional combustibility, abundant availability, and large-scale storage capacity. Particularly, photocatalytic water splitting technology enables solar-to-hydrogen energy conversion through semiconductor catalysts without generating secondary pollution.
Among non-metallic semiconductor materials, graphitic carbon nitride (g-C3N4) demonstrates significant potential for photocatalytic hydrogen production. However, pure carbon nitride exhibits inherent limitations including limited specific surface area, inefficient photoinduced charge carrier migration, narrow spectral absorption range, and rapid electron-hole recombination, resulting in suboptimal photocatalytic hydrogen production efficiency. This monograph focuses on enhancing light absorption/utilization efficiency and suppressing charge recombination in carbon nitride through strategic doping modification and heterojunction construction, while systematically analyzing the photocatalytic mechanisms of carbon nitride-based materials.
This publication aims to provide researchers in photocatalytic water splitting with comprehensive preparation methodologies and application guidelines for carbon nitride-based materials, offering scientific foundation and technical references for advancing this field. The content synthesizes extensive research literature, with substantive contributions from multiple authors: Liu Xuecheng (Chapters 1-3, 100,000 words), Yao Bin (Chapters 4-6, 100,000 words), Qi Ning (Chapters 7-8, 50,000 words), and Xu Hanyu (Chapters 9-10, 50,000 words).
We gratefully acknowledge the academic publication fund support from Chongqing Technology and Business University. The monograph was revised and compiled by Liu Xuecheng. Due to the limited level of the editor, there may be inappropriate content selection and wording in the book. We kindly ask readers and peers to criticize and correct us.
Authors

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.