登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書

『簡體書』高等量子力学(英文版)

書城自編碼: 2642225
分類:簡體書→大陸圖書→自然科學力学
作者: 李晋斌 编著
國際書號(ISBN): 9787030452467
出版社: 科学出版社
出版日期: 2015-08-01
版次: 1 印次: 1
頁數/字數: 226/337000
書度/開本: 16开 釘裝: 平装

售價:HK$ 96.2

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
围棋的故事
《 围棋的故事 》

售價:HK$ 74.8
AI超级个体:让创业更容易
《 AI超级个体:让创业更容易 》

售價:HK$ 85.8
张居正大传
《 张居正大传 》

售價:HK$ 65.8
学校如何改进(梦山书系)
《 学校如何改进(梦山书系) 》

售價:HK$ 52.8
基层儿科医生 (第2版)
《 基层儿科医生 (第2版) 》

售價:HK$ 173.8
战国秦汉时期的择日术与时空认知
《 战国秦汉时期的择日术与时空认知 》

售價:HK$ 74.8
你好,AI:智能时代职场生存指南(为现代职场人量身打造的AI实用指南,帮助读者从对AI的初步认知,进阶到灵活运用DeepSeek等智能工具高效完成工作,提升生活品质。)
《 你好,AI:智能时代职场生存指南(为现代职场人量身打造的AI实用指南,帮助读者从对AI的初步认知,进阶到灵活运用DeepSeek等智能工具高效完成工作,提升生活品质。) 》

售價:HK$ 63.8
美国中国史研究
《 美国中国史研究 》

售價:HK$ 97.9

建議一齊購買:

+

HK$ 64.8
《高等师范院校公共课教育学教材:教育学基础 第3版》
+

HK$ 84.8
《耕作学(第二版)》
+

HK$ 262.4
《内科学(第八版/本科临床/十二五规划)》
+

HK$ 106.0
《复旦博学 新闻与传播系列:新闻学概论(第五版)》
編輯推薦:
《Advanced Quantum Mechanics 高等量子力学》适用于凝聚态、材料、光学等专业相关的学生使用, 《Advanced Quantum Mechanics 高等量子力学》内容对应约 80 课时的教学需要, 使用《Advanced Quantum Mechanics 高等量子力学》作为参考书的教师可根据自己的教学需求调整.
內容簡介:
《Advanced Quantum Mechanics 高等量子力学》改编自作者在南京航空航天大学讲授 10 年的高等量子力学讲义, 内容包括量子力学的数学基础即希尔伯特空间的基本性质、量子力学公理、薛定谔方程的近似解法等, 课后的习题来自每年的作业和考题. 《Advanced Quantum Mechanics 高等量子力学》的一大特点是自成体系, 尽可能少地涉及本科阶段相关知识, 方便自学.
目錄
Contents
Preface
Chapter1MathematicalToolsofQuantumMechanics1
11TheHilbertSpace2
12DualSpacesandtheDiracNotation6
13Operators8
14Self-AdjointOperatorsandEigen-Problem12
15RepresentationinDiscreteBases21
16RepresentationinContinuesBases25
17MatrixandWaveFunction29
18DirectProductandDirectSum32
19Exercises36
Chapter2FundamentalsofQuantumMechanics39
21TheBasicPostulatesofQuantumMechanics40
22TheStateofaSystem41
23ObservablesandOperators43
24MeasurementinQuantumMechanics44
25TimeEvolutionoftheSystem''sState49
26SymmetriesandConservationLaws53
27StateOperator56
28ThreePicturesofQuantumMechanics68
29ConnectingQuantumtoClassicalMechanics69
210ApproximationMethodsI||TheVariationalMethod72
211ApproximationMethodsII||TheWKBMethod75
212Exercises85
Chapter3SecondQuantization90
31IdenticalParticles,Many-ParticleStatesandPermutationSymmetry91
32Bosons99
33Fermions103
34FieldTheory106
35MomentumRepresentation109
36NoninteractingFermions111
37GroundStateEnergyandElementaryTheoryoftheElectronGas115
38¤Hartree-FockEquationsforAtoms120
39FreeBosons122
310¤WeaklyInteracting,DiluteBoseGas125
ivContents
311Exercises131
Chapter4CoherentStatesandSqueezedStates138
41FourRepresentationsofQuantumStates139
42CoherentStates141
43TheQuasi-ClassicalInterpretationofCoherentStates145
44CoordinateRepresentationinTermsofDisplacementOperator148
45CoherentStatesVectorAlgebra150
46SqueezedStates153
47Exercises160
Chapter5Green''sFunctionsandScatteringTheory164
51Time-IndependentGreen''sFunctions164
52Time-DependentGreen''sFunctions176
53Green''sFunctionsandPerturbationTheory185
54ScatteringTheoryI|ScatteringOperatorsandBornApproximation193
55ScatteringTheoryII|PartialWave201
Chapter6GeometricPhases206
61Introduction207
62QuantalPhaseFactorsforAdiabaticChanges210
63AdiabaticApproximation214
64Berry''sAdiabaticPhase221
Bibliography227
內容試閱
Chapter 1
Mathematical Tools of Quantum Mechanics
Today quantum mechanics forms an important part of our understanding of physical phenom- ena. Its consequences both at the fundamental and practical levels have intrigued mathemati- cians, physicists, chemists, and even philosophers for the past century. A quantum system is usually described in terms of certain Hilbert spaces H and linear operators acting on these spaces. The mathematical properties and structure of Hilbert spaces are essential for a proper understanding of the formalism of quantum mechanics. For this, we are going to review brie°y the properties of Hilbert spaces and those of linear operators. We will then consider Dirac''s bra-ket notation.
Quantum mechanics was formulated in two di.erent ways by Schr.odinger and Heisenberg. Schr.odinger''s wave mechanics and Heisenberg''s matrix mechanics are the representations of the general formalism of quantum mechanics in continuous and discrete basis systems, respectively.So we will also examine the mathematics involved in representing kets, bras, bra-kets, and operators in discrete and continuous bases.
Certain mathematical topics are essential for quantum mechanics, not only as computational tools, but because they form the most e.ective language in terms of which the theory can be formulated. We deal with the mathematical machinery needed to study quantum mechanics in this chapter. Although it is mathematical in scope, no attempt is made to be mathematically complete or rigorous. We limit ourselves to those practical issues that are relevant to the formalism of quantum mechanics. These topics include the theory of linear vector spaces and linear operators. A uniˉed theory based on that mathematical structure was ˉrst formulated by P. A. M. Dirac, and the formulation used in this book is really a modernized version ofDirac''s formalism.
The physical development of quantum mechanics begins in the Chapt.2, and the mathemat- ically sophisticated reader may turn there at once. But since not only the results, but also the concepts and logical framework of this chapter are freely used in developing the physical theory, the reader is advised to at least skim this ˉrst chapter before proceeding to next chapter.
1.1 The Hilbert Space
A linear vector space consists of two sets of elements and two algebraic rules:
1 A set of vectors .; á; .; ¢ ¢ ¢ and a set of scalars a; b; c; ¢ ¢ ¢ , if the scalars belong to the ˉeld of complex real numbers, we speak of a complex real linear vector space. Henceforth the scalars will be complex numbers unless otherwise stated.
2 A rule for vector addition and a rule for scalar multiplication.
1. Addition rule
The addition rule has the properties and structure of an Abelian groups.
1 If . and á are vectors elements of a space, their sum . + á, is also a vector of the same space.
2 Commutativity: . + á = á +
3 Associativity: . + á + . = á + . + ..
4 Existence of a zero or neutral vector: for each vector ., there must exist a zero vector such that
5 Existence of a symmetric or inverse vector: for each vector ., there must exist a sym- metric vector á such that . + á = #. We write á as later.
2. Multiplication rule
The multiplication rule of vectors by scalars scalars can be real or complex numbers has these properties.
1 The product of a scalar gives another vector. In general, if . and á are two vector of the space, any linear combination a. + bá is also a vector of the space, a and b being scalars.
2 Distributivity with respect to addition:8
a. + á = a. + aá;
a + b. = a. + b.:
3 Associativity with respect to multiplication of scalars: ab. = ab
4 For each element . there must exist a unitary element, 1, and zero, 0, scalar such that: 1 ¢ . = . ¢ 1 = .; 0 ¢ . = . ¢ 0 =
1.1 The Hilbert Space 3
Examples
Among the very many examples of linear vector spaces, there are two classes that are of common
interest:
1 Discrete vectors, which may be represented as columns of complex numbers, a1; a2; ¢ ¢ ¢ T.
2 Spaces of functions of some type, for example the space of all di.erentiable functions. One can readily verify that these examples satisfy the deˉnition of a linear vector space.
1.1.1 Deˉnition of Hilbert Space
A Hilbert space H consists of a set of vectors .; á; .; ¢ ¢ ¢ and a set of scalars a; b; ; ¢ ¢ ¢
which satisfy the following four properties.
1. H is a linear space
The properties of a linear space were considered in the previous section.
2. H has a deˉned scalar inner product that is strict positive
The scalar product of an element . with another element á is scalar, a complex number, denoted by .; á=complex number. The scalar product satisˉed the following properties.
1 The scalar product of . with á is equal to the complex conjugate of the scalar product of á with .: .; á = á; .¤.
2 The scalar product of . with respect to aá1 + bá2 is
.; aá1 + bá2 = a.; á1 + b.;

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.