新書推薦:

《
是药非药 : 原来本草这么有趣
》
售價:HK$
64.9

《
图解计算机网络:Internet、移动通信与云计算
》
售價:HK$
65.5

《
语文课堂教学技能研究
》
售價:HK$
63.8

《
北京城史记 元代卷
》
售價:HK$
151.8

《
成功的大客户经营
》
售價:HK$
75.9

《
攀岩医学
》
售價:HK$
151.8

《
自然语言处理综论(第二版)
》
售價:HK$
218.9

《
保险代理人职业精进之道
》
售價:HK$
86.9
|
| 內容簡介: |
|
FiniteElementMethodanditsApplicationsdiscussesthemethodsinageneralframeandtheperformanceonthecomputer,thevariationalformulationsforellipticboundaryvalueproblems,theerrorestimatesandconvergenceforfiniteelementapproximatsolutionsandnonstandardfiniteelement.Inparticular,presentationsofthesubjectincludetheapplicationsoffiniteelementmethodtovariousscientificandengineeringproblems,forexample,threedimensionalelasticbeam,elasticmechanics,threedimensionalneutrondiffusionproblems,magnetohydrodynamics,threedimensionalturbomachineryflows,Navier-Stokesequationsandbifurcationphenomenafornonlinearproblem,etc.Mostapplicationsresultswereestablishedbytheauthorsinthepastthreedecades.ThisbookwaswrittenbyKaitaiLi,AixiangHuang,QinghuaiHuang.
|
| 目錄:
|
Contents
Chapter 1 The Structure of Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Galerkin Variational Principle and Ritz Variational Principle . . . . . . . . . . . . . . . . . . . . . 1
1.2 Galerkin Approximation Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Finite Element Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Element Stiffness and Total Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Chapter 2 Elements and Shape Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.1 Rectangular Shape Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2.1.1 Lagrange Type Shape Function of Rectangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Hermite Type Shape Function of Rectangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.2.1 Area Coordinate and Volume Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Lagrange Type Shape Function of Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Hermite Type Shape Function of Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Shape Function of Three Dimensional Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.1 Lagrange Type Shape Function of Hexahedron Element . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Lagrange Type Shape Function of Tetrahedron Element . . . . . . . . . . . . . . . . . . . . . . . .50
2.3.3 Shape Function of The Three Prism Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.3.4 Hermite-Type Shape Function of Tetrahedron Element . . . . . . . . . . . . . . . . . . . . . . . . .52
2.4 Iso-parametric Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Curve Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Chapter 3 Procedure and Performance of Computation of Finite Element Method. . . . . . . . .60
3.1 The Procedure of Finite Element Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 One dimensional Store of Symmetric and Band Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Computation of Element Stiffness Matrix and Synthesis of Total Stiffness Matrix . . . . . . 72
3.4.1 Computation of Shape Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
3.4.2 The Computation of Element Stiffness Matrix and Element Array . . . . . . . . . . . . . . 76
3.4.3 Superposition of Elements of Total Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Direct Solution Method for Finite Element Algebraic Equations. . . . . . . . . . . . . . . . . .79
3.5.1 Decomposition for Symmetric and Positive Definition Matrix . . . . . . . . . . . . . . . . . . . 80
3.5.2 Direct Solution for Algebraic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 Other Solution Method for Finite Element Algebraic Equations . . . . . . . . . . . . . . . . . . 85
3.6.1 The Steepest Descent Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
3.6.2 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Treatment of Constraint Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.7.1 Treatment of Imposed Constraint Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
3.7.2 Treatment of Periodic Constrain Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
3.7.3 Remove Periodic Constrain and Matrix Transformation . . . . . . . . . . . . . . . . . . . . . . . . 92
3.7.4 Performance of the Method on Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.8 Calculation of Derivatives of Function . . . . . . . . . . . . . . . . . . . 98
3.9 Automatic Generation of Finite Element Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Chapter 4 Sobolev Space . . . . . . . . . . . . . . . . . . . 104
4.1 Some Notations and Assumptions on Domain Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Classical Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 LpΩ Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4 Spaces of Distr
|
| 內容試閱:
|
Chapter 1
The Structure of Finite Element Method
The finite element method is a numerical computational method for differential equations and
partial differential equations. In order to solve the general field problem by using finite element
method, it must pass through the following processes:
1 Find the variational formulation associated with original field problem.
2 Establish finite element subspace. For example, select the element type and associated
phase functions.
3 Establish element stiffness matrix, element column and assemble global stiffness matrixfull
column.
4 Treatment of the boundary conditions and solving of the system of finite element equations.
5 Come back to the real world.
In this book, the first four processes will be systematic formulations in the first chapter till
third chapter.
1.1 Galerkin Variational Principle and Ritz Variational Principle
As an example, we consider the linear elliptic boundary value problem of two dimension,
1.1.1
where, Ω is a connected domain in R2, .Ω = Γ1 ∪ Γ2 is a piecewise smooth boundary. Let
n denote the unit outward normal vector to .Ω defined almost everywhere on .Ω. px, y ∈
C1Ω, px, y ≥ p0 0, σx, y ∈ C0Ω and σx, y ≥ 0.
Throughout this chapter we make notation: C0Ω = the set of all continuous function in
an open subset in Rn. CkΩ = the set of functions v ∈ C0Ω, whose derivatives of order k,
exist and are continuous;
where α = α1, ? ? ? , αn, |α| = α1 + ? ? ? + αn.
Assume that ux, y ∈ C2Ω satisfies 1.1.1 in Ω and on .Ω, the function ux, y is called
classical solution of problem 1.1.1.
Next, we consider weak solution of 1.1.1. Define the norm
1.1.2
Sobolev space H1Ω is a closure of C∞Ω, under the norm 1.1.2 with the inner product
1.1.3 H1Ω is a Hilbert space which is called one order Sobolev space. Let
C∞0 Ω = {v : v is an infinite differentiable function and support of v . Ω},
H10 Ω = the closure of C∞0 Ω under the norm1.1.2,
it is equivalent to
H10 Ω = {v : v ∈ H1Ω, v|.Ω = 0}.
In addition, let
C∞# Ω = {v : v ∈ C∞Ω, v|Γ1 = 0},
V Ω = closure ofC∞# Ω under the norm1.1.2,
which is equivalent to
V = {v : v ∈ H1Ω, v|Γ1 = 0}.
It is clear that V is a Hilbert space with inner product 1.1.3. Furthermore,
H10 Ω . V . H1Ω.
Let us introduce bilinear functional
1.1.4
In 1.1.4, fixed u, then Bu, v is a linear functional of v, while v is fixed, it is a linear functional
of u. In other words, suppose α1, α2, β1, β2 are arbitrary constants, then
Bα1u1 + α2u2, β1v1 + β2v2 =α1β1Bu1, v1 + α1β2Bu1, v2
+ α2β1Bu2, v1 + α2β2Bu2, v2, .u1, u2, v1, v2 ∈ H1Ω.
It is clear that 1.1.4 satisfies
1 Symmetry,
Bu, v = Bv, u. 1.1.5
2 The continuity in V × V , i.e., there exists a constant M 0, such that
|Bu, v| M u 1,Ω v 1,Ω, .u, v ∈ V. 1.1.6
3 Coerciveness in V , i.e., there exists constant γ 0, such that
Bu, u γ u 2 1,Ω, .u ∈ V. 1.1.7
Of course,
is a continuous linear functional in v.
The Galerkin Variational Formulation for 1.1.1: Find u ∈ V , such that
Bu, v = fv, .v ∈ V. 1.1.8
A solution u satisfying 1.1.8 is called a weak solution of 1.1.1. The space V is called
admissible space or trial space. On the other hand, 1.1.8 must be satisfied for every v ∈ V ,
therefore, V is called test function space. If trial and test space for the variational problem are
the same Hilbert V , in this case, V is called energy space.
Owing to the boundary condition on Γ2 is contained in the variational problem 1.1.8, the
boundary condition on Γ2 is called nature boundary condition, while the boundary condition
on Γ1 is called essential boundary condition.
The following proposition gives the relationship between classical solution and weak solution
of 1.1.1.
Proposition 1.1 Suppose u ∈ C2Ω. If u is a classical solution of 1.1.1, then, u is
the weak solution of 1.1.1. Otherwise, if u is a weak solution of 1.1.1, then u is a classical
solution of 1.1.1.
Proof Assume that u ∈ C2Ω is a classical solution of 1.1.1, .v ∈ V , multiplying both
sides of 1.1.1 by v and integrating
Applying Gauss theorem
In view of v ∈ V , and u satisfying boundary condition we have
Bu, v = fv, .v ∈ V,
i.e., u satisfies 1.1.7.
Conversely, let u ∈ C2Ω be a solution of 1.1.8, owing to v|Γ1 = 0, we obtain
Substituting above equity into 1.1.8 leads to
By the arbitrary of v ∈ V , it yields that u is a classical solution of 1.1.1. The proof is
complete.
The following Lax-Milgram theorem guarantees the existence of the Garlerkin variational
problem 1.2.8.
Theorem 1.1Lax-Milgram Theorem Let V be a Hilbert space, Bu, v is a bilinear
functional in V × V and satisfies:
Symmetry Bu, v = Bv, u, .u, v ∈ V. 1.1.9
Continuity There exists a positive constant M independent of u, v, such that
|Bu, v| M u v , .u, v ∈ V. 1.1.10
Coerciveness There exists a constant
|
|