新書推薦:

《
查理的一生 写给焦虑世代的普通人 百岁老人真实人生故事 现实版《阿甘正传》充满历史洞见、人生智慧、生
》
售價:HK$
63.8

《
超级工程排行榜名录
》
售價:HK$
220.0

《
从诗词到名著——翻翻祖先的书架
》
售價:HK$
65.8

《
明智恭介的疑案
》
售價:HK$
64.9

《
小型建筑创作札记
》
售價:HK$
76.8

《
大变局下的中国声音:国际热点问题透视(“认识中国`·了解中国”书系;国家出版基金项目)
》
售價:HK$
74.8

《
中国对外贸易政策的政治经济分析
》
售價:HK$
165.0

《
如何走好人生下坡路:用坚毅力找到人生低谷的出口
》
售價:HK$
71.5
|
| 內容簡介: |
The implicit function theorem is. along with its close cousin
來源:香港大書城megBookStore,http://www.megbook.com.hk the inverse func- tion theorem, one of the most important, and one
of the oldest, paradigms in modcrn mathemarics. One can see the
germ of the idea for the implicir func tion theorem in the writings
of Isaac Newton (1642-1727), and Gottfried Leib-niz''s (1646-1716)
work cxplicitty contains an instance of implicit
differentiation.
Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that is
essentially a version of the inverse function theorem, ic was
Augustin-Louis Cauchy (1789-1857) who approached the implicit
function theorem with mathematical rigor and it is he who is
gencrally acknowledgcd as the discovcrer of the theorem. In
Chap-ter 2, we will give details of the contributions of Newton,
Lagrange, and Cauchy to the development of the implicit function
theorem.
|
| 目錄:
|
Preface
1 IntroductIon to the Implicit Function Theorem
1.1 Implicit Functions
1.2 An Informal Version ofthe Implicit Function Theorem
1.3 Thelmplicit Function Theorem Paradigm
2 History
2.1 Historicallntroduction
2.2 Newton
2.3 Lagrange
2.4 Cauchy
3 Basfcldeas
3.1 Introduction
3.2 The Inductive Proof of the Implicit Function Theorem
3.3 The Classical Approach to the Implicit Function Theorem
3.4 The Contraction Mapping Fixed Point Principle
3.5 The Rank Theorem and the Decomposition Theorem
3.6 A Counterexample
4 Applications
4.1 Ordinary Differential Equations
4.2 Numerical Homotopy Methods
4.3 Equivalent Definitions of a Smooth Surface
4.4 Smoothncss ofthc Distance Function
5 VariatIons and Genera Hzations
5.1 The Weicrstrass Preparation Theorem
5.2 ImplicU Function Theorems without Differenriability
5.3 An Inverse Function Theorcm for Continuous Mappings
5.4 Some Singular Cases of the Implicit Function Theorem
6 Advanced Impllclt Functlon Theorems
6.1 Analyticlmplicit Function Theorems
6.2 Hadamard''s Globallnverse Function Thecntm
6.3 The Implicit Function Theorem via the Newton-Raphson
Method
6.4 The Nash-Moscrlmplicit Function Theorem
6.4.1 Introductory Remarks
6.4.2 Enunciation of the Nash-MoserThcorem
6.4.3 First Step of the ProofofNash-Moscr
6.4.4 The Crux ofthe Matter
6.4.5 Construction ofthe Smoothing Operators
6.4.6 A UsefulCorollary
Glossary
Bibliography
Index
|
|