新書推薦:

《
中式园林的秩序(文津图书奖得主朱良志教授的园林美学新作,在园林里读懂中国人的生命哲学)
》
售價:HK$
96.8

《
魏晋之变:门阀政治与中古中国社会秩序的重塑
》
售價:HK$
96.8

《
诈骗社会学:谎言与信任的攻防
》
售價:HK$
63.8

《
怪诞行为学·漫画版——管好零花钱
》
售價:HK$
46.2

《
甲子园 高校棒球100年与近现代日本
》
售價:HK$
64.9

《
20世纪20年代日本侵华研究(抗日战争专题研究)
》
售價:HK$
162.8

《
物联网漏洞挖掘与利用:方法、技巧和案例
》
售價:HK$
108.9

《
家族财富管理:永续繁荣的智慧体
》
售價:HK$
74.8
|
| 內容簡介: |
Inthisbookweaimtopresent,inaunifiedframework,abroadspectrumofmathematicaltheorythathasgrowninconnectionwiththestudyofproblemsofoptimization,equilibrium,control,andstabilityoflinearandnonlinearsystems.ThetitleVariationalAnalysisrefiectsthisbreadth.
來源:香港大書城megBookStore,http://www.megbook.com.hk Foralongtime,variationalproblemshavebeenidentifiedmostlywiththe''calculusofvariations''.Inthatvenerablesubject,builtaroundtheminimizationofintegralfunctionals,constraintswererelativelysimpleandmuchofthefocuswasoninfinite-dimensionalfunctionspaces.Amajorthemewastheexplorationofvariationsaroundapoint,withintheboundsimposedbytheconstraints,inordertohelpcharacterizesolutionsandportraythemintermsof''variationalprinciples''.Notionsofperturbation,approximationandevengeneralizeddifferentiabilitywereextensivelyinvestigated,Variationaltheoryprogressedalsotothestudyofso-calledstationarypoints,criticalpoints,andotherindicationsofsingularitythatapointmighthaverelativetoitsneighbors,especiallyinassociationwithexistencetheoremsfordifferentialequations.
|
| 目錄:
|
Chapter1.MaxandMin
A.PenaltiesandConstraints
B.EpigraphsandSemicontinuity
C.AttainmentofaMinimum
D.Continuity,ClosureandGrowth
E.ExtendedArithmetic
F.ParametricDependence
G.MoreauEnvelopes
H.Epi-AdditionandEpi-Multiplication
I*.AuxiliaryFactsandPrinciples
Commentary
Chapter2.Convexity
A.ConvexSetsandFunctions
B.LevelSetsandIntersections
C.DerivativeTests
D.ConvexityinOperations
E.ConvexHulls
F.ClosuresandContimuty
G.*Separation
H*RelativeInteriors
I*PiecewiseLinearFunctions
J*OtherExamples
Commentary
Chapter3.ConesandCosmicClosure
A.DirectionPoints
B.HorizonCones
C.HorizonFunctions
D.CoercivityProperties
E*ConesandOrderings
F*CosmicConvexity
G*PositiveHulls
Commentary
Chapter4.SetConvergence
A.InnerandOuterLimits
B.Painleve-KuratowskiConvergence
C.Pompeiu-HausdorffDistance
D.ConesandConvexSets
E.CompactnessProperties
F.HorizonLimits
G*ContimutyofOperations
H*QuantificationofConvergence
I*HyperspaceMetrics
Commentary
Chapter5.Set-ValuedMappings
A.Domains,RangesandInverses
B.ContinuityandSemicontimuty
C.LocalBoundedness
D.TotalContinuity
E.PointwiseandGraphicalConvergence
F.EquicontinuityofSequences
G.ContinuousandUniformConvergence
H*MetricDescriptionsofConvergence
I*OperationsonMappings
J*GenericContinuityandSelections
Commentary.
Chapter6.VariationalGeometry
A.TangentCones
B.NormalConesandClarkeRegularity
C.SmoothManifoldsandConvexSets
D.OptimalityandLagrangeMultipliers
E.ProximalNormalsandPolarity
F.Tangent-NormalRelations
G*RecessionProperties
H*IrregularityandConvexification
I*OtherFormulas
Commentary
Chapter7.EpigraphicalLimits
A.PointwiseConvergence
B.Epi-Convergence
C.ContinuousandUniformConvergence
D.GeneralizedDifferentiability
E.ConvergenceinMinimization
F.Epi-ContinuityofFunction-ValuedMappings
G.ContinuityofOperations
H*TotalEpi-Convergence
I*Epi-Distances
J*SolutionEstimates
Commentary
Chapter8.SubderivativesandSubgradients
A.SubderivativesofFunctions
B.SubgradientsofFunctions
C.ConvexityandOptimality
D.RegularSubderivatives
E.SupportFunctionsandSubdifferentialDuality
F.Calmness
G.GraphicalDifferentiationofMappings
H*Proto-DifferentiabilityandGraphicalRegularity
I*ProximalSubgradients
J*OtherResults
Commentary
Chapter9.LipschitzianProperties
A.Single-ValuedMappings
B.EstimatesoftheLipschitzModulus
C.SubdifferentialCharacterizations
D.DerivativeMappingsandTheirNorms
E.LipschitzianConceptsforSet-ValuedMappings
……
Chapter10.SubdifferentialCalculus
Chapter11.Dualization
Chapter12.MonotoneMappings
Chapter13.Second-OrderTheory
Chapter14.Measurability
|
|