新書推薦:
《
根源、制度和秩序:从老子到黄老学(王中江著作系列)
》
售價:HK$
121.0
《
索恩丛书·北宋政治与保守主义:司马光的从政与思想(1019~1086)
》
售價:HK$
75.9
《
掌故家的心事
》
售價:HK$
85.8
《
农为邦本——农业历史与传统中国
》
售價:HK$
74.8
《
郊庙之外:隋唐国家祭祀与宗教 增订版 (三联·哈佛燕京学术丛书)
》
售價:HK$
105.6
《
小麦文明:“黄金石油”争夺战
》
售價:HK$
97.9
《
悬壶杂记全集:老中医多年临证经验总结(套装3册) 中医医案诊疗思路和处方药应用
》
售價:HK$
135.1
《
无法忍受谎言的人:一个调查记者的三十年
》
售價:HK$
63.8
編輯推薦:
小波理论重要贡献者数学家经典名著全新中文译本! 适合从事信号分析、信号及信息获取与处理、图象处理、通信理论、信息安全、数学、物理、计算机、医学、化学、石油地质勘测、机械工程等方面的学术研究人员、工程技术人员,高校相关专业师生
內容簡介:
本书是数学界公认的经典名著,包含了20世纪80年代以来世界上有关小波分析的先进成果,全面论述了小波分析的主要原理和方法,并给出了大量实践例题,描述了小波的许多应用。 本书适合工程数学、信号分析、通信等方向的科研人员和高等院校相关专业师生。
關於作者:
Ingrid Daubechies 2011年起受聘为杜克大学数学系教授,2004年至2011年受聘为普林斯顿大学数学系和应用数学与计算数学研究中心教授。国际数学联盟首位女性主席。曾在布鲁塞尔的佛雷大学理论物理系工作,后任知名的AT&T贝尔实验室高级技术员,是卢特格大学数学系的教授。曾获得1997年Ruth Lyttle Satter数学奖。被频繁应邀到世界各地作学术报告,发表了大量学术论文,出版了许多学术著作。
目錄 :
第1章 小波综述:内容、原因、方式1
1.1 时频局部化 1
1.2 小波变换:与加窗傅里叶变换的相似与不同 2
1.3 不同类型的小波变换 6
1.3.1 连续小波变换 6
1.3.2 离散但冗余的小波变换框架 7
1.3.3 正交小波基:多分辨率分析 9
第2章 连续小波变换 16
2.1 带限函数与香农定理 16
2.2 作为再生核希尔伯特空间特例的带限函数 19
2.3 带限和时限 20
2.4 连续小波变换 22
2.5 构成连续小波变换基础的再生核希尔伯特空间 29
2.6 更高维连续小波变换 31
2.7 与连续加窗傅里叶变换的相似 32
2.8 用于构建有用算子的连续变换 34
2.9 用于数学变焦的连续小波变换:局部正则性的表征 43
第3章 离散小波变换:框架 50
3.1 小波变换的离散化 50
3.2 框架概述 53
3.3 小波框架 60
3.3.1 一个必要条件:母小波的容许性 60
3.3.2 一个充分条件及框架界的估计 63
3.3.3 对偶框架 66
3.3.4 基本方案的一些变化形式 67
3.3.5 示例 69
3.4 加窗傅里叶变换的框架 77
3.4.1 一个必要条件:足够高的时频密度 77
3.4.2 一个充分条件和对框架界的估计 78
3.4.3 对偶框架 79
3.4.4 示例V80
3.5 时频局部化 83
3.6 框架中的冗余:可以换回什么V93
3.7 一些结论性要点 95
第4章 时频密度与正交基 102
4.1 时频密度在小波框架与加窗傅里叶框架中的角色 102
4.2 正交基 109
4.2.1 正交小波基 109
4.2.2 加窗傅里叶变换回顾:毕竟是“好”正交基! 114
第5章 小波正交基与多分辨率分析 123
5.1 基本思想 123
5.2 示例 131
5.3 放松某些条件 133
5.3.1 尺度函数的里斯基 133
5.3.2 以尺度函数为起点 134
5.4 更多示例:Battle-Lemarié小波族 139
5.5 正交小波基的正则性 146
5.6 与子带滤波方法的联系 149
第6章 紧支撑小波的正交基 159
6.1 m_0 的构造 159
6.2 与正交小波基的对应关系 166
6.3 正交的充要条件 173
6.4 生成正交基的紧支撑小波举例 185
6.5 级联算法:与细分或细化格式的联系 193
第7章 再谈紧支撑小波的正则性 203
7.1 基于傅里叶的方法 204
7.1.1 暴力方法 204
7.1.2 由不变循环推导衰减估计 208
7.1.3 李特尔伍德﹣佩利类型的估计 214
7.2 直接方法 219
7.3 具有更强正则性的紧支撑小波 228
7.4 正则性,还是消失矩 230
第8章 紧支撑小波基的对称性 236
8.1 紧支撑正交小波缺乏对称性 236
8.1.1 更接近线性相位 239
8.2 夸夫曼小波 242
8.3 对称双正交小波基 246
8.3.1 精确重构 246
8.3.2 尺度函数与小波 248
8.3.3 正则性与消失矩 252
8.3.4 对称 253
8.3.5 接近正交基的双正交基 263
第9章 以小波表征泛函空间 269
9.1 小波:在1