登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書

『簡體書』统计力学(第4版)(英文版)物理学经典 ELSEVIER 爱思唯尔 Statistical Mechanics Fourth Edition

書城自編碼: 4111404
分類:簡體書→大陸圖書→自然科學力学
作者: [美]拉杰· 帕斯里亚[R. K. Pathria][美]保
國際書號(ISBN): 9787523218587
出版社: 世界图书出版公司
出版日期: 2025-04-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 152.9

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
灯花笑共此灯(全二册)
《 灯花笑共此灯(全二册) 》

售價:HK$ 76.8
系统家庭治疗的刻意练习
《 系统家庭治疗的刻意练习 》

售價:HK$ 83.5
2049:未来10000天的可能
《 2049:未来10000天的可能 》

售價:HK$ 75.9
复利效应
《 复利效应 》

售價:HK$ 48.4
莫雷诺心理学:慢性焦虑(西班牙临床心理学家经典入门指南,焦虑症与恐惧症治愈手册。冲破情绪困局,揭示焦虑本质)
《 莫雷诺心理学:慢性焦虑(西班牙临床心理学家经典入门指南,焦虑症与恐惧症治愈手册。冲破情绪困局,揭示焦虑本质) 》

售價:HK$ 54.8
莫雷诺心理学:克服强迫症(第5版,西班牙临床心理学家经典入门指南,强迫症的诱因、病症与治疗,收录强迫症自测表)
《 莫雷诺心理学:克服强迫症(第5版,西班牙临床心理学家经典入门指南,强迫症的诱因、病症与治疗,收录强迫症自测表) 》

售價:HK$ 54.8
杰出投资者的情绪管理课:揭秘巴菲特不住在华尔街的真相(德国年度财经图书奖)
《 杰出投资者的情绪管理课:揭秘巴菲特不住在华尔街的真相(德国年度财经图书奖) 》

售價:HK$ 87.8
粤港澳大湾区协同发展报告(2024)
《 粤港澳大湾区协同发展报告(2024) 》

售價:HK$ 178.2

編輯推薦:
【半世纪传承,学界泰斗联袂修订】
拉杰· 帕斯里亚与保罗·比尔两位物理学巨擘倾力打造,第四版延续50年教材精髓,融合液氦超流、相变临界现象等开创性研究,奠定统计力学领域不可撼动的标杆地位。【体系完备,微观到宏观一脉贯通】
从基础系综理论、量子统计到非平衡涨落、早期宇宙热力学,16章内容由浅入深,辅以蒙特卡罗与分子动力学模拟实战,构建“理论—计算—应用”全链条知识网络,适配物理、材料等多学科需求。【历史脉络 学术宝库,科研教学双赋能】
开篇详述统计力学发展史,附千余篇跨世纪参考文献(含实验、理论、教学文献),既为本科生提供清晰学习路径,亦为科研人员攻坚相变、凝聚态难题提供可参考的工具书。
內容簡介:
本书是统计力学课程的教材,第一版于1972年出版,至今已有五十多年的时间。本书是于2022年出版的第四版。本书共16章。第1章至第 9 章属于统计力学的基础知识。包括热力学的统计基础、系综理论的基本原理、正则系综、巨正则系综、量子统计学的表述形式、简单气体理论、理想玻色系统和理想费米系统,以及早期宇宙热力学;第 10 章至第 15 章的内容难度相对较高,包括相互作用系统的统计力学:集团展开法和量子场方法,涨落和非平衡统计力学,以及相变和临界现象的相关主题;最后一章则介绍了计算机模拟。此外在正文开始之前作者还增加了统计力学的历史介绍,能够满足对这部分历史感兴趣的读者。本书还提供了相当广泛的参考书目。书目中包含各种参考文献——既有旧的,也有新的;既有实验性的,也有理论性的;既有技术性的,也有教学性的。这将使本书对更多读者有用。
關於作者:
拉杰· 帕斯里亚(R. K. Pathria)是一位理论物理学家。他因研究液氦中的超流动性、热力学量的洛伦兹变换、晶格和的严格计算以及相变中的有限尺寸效应而闻名。帕特里亚于1953年和1954年分别获得霍希尔布尔潘贾布大学理学学士和理学硕士学位,并于1957年获得德里大学物理学博士学位。曾任教于他曾在德里大学、麦克马斯特大学、阿尔伯塔大学、昌迪加尔潘贾布大学和滑铁卢大学。于2000 年加入加利福尼亚大学圣地亚哥分校,担任物理学兼职教授。滑铁卢大学授予他“杰出教师奖”和“杰出名誉教授”称号,他还是美国物理学会会员。
保罗·比尔(Paul D. Beale)是一位理论物理学家,科罗拉多大学博尔德分校的物理学教授。专攻统计力学,重点研究相变和临界现象。他的研究工作包括重正化群方法,分子系统的固液相变,以及分子偶极子层中的有序化等。他于1977年以最高荣誉获得北卡罗来纳大学教堂山分校物理学学士学位,并于1982年获得康奈尔大学物理学博士学位。1982—1984年,他在牛津大学理论物理系担任博士后助理研究员。1984年,他加入科罗拉多大学博尔德分校任助理教授,1991年晋升为副教授,1997年晋升为教授。2008—2016年,他担任物理系主任。他还曾担任文理学院自然科学副院长和荣誉项目主任。
目錄
Preface to the fourth edition
Preface to the third edition
Preface to the second edition
Preface to the first edition
Historical introduction
The statistical basis of thermodynamics
1.1. The macroscopic and the microscopic states
1.2. Contact between statistics and thermodynamics :physical significance of the number Ω(N, V, E)
1.3. Further contact between statistics and thermodynamics
1.4. The classical ideal gas
1.5. The entropy of mixing and the Gibbs paradox
1.6. The “correct” enumeration of the microstates
Problems
Elements of ensemble theory
2.1. Phase space of a classical system
2.2. Liouville‘s theorem and its consequences
2.3. The microcanonical ensemble
2.4. Examples
2.5. Quantum states and the phase space
Problems
3.The canonical ensemble
3.1. Equilibrium between a system and a heat reservoir
3.2. A system in the canonical ensemble
3.3. Physical significance of the various statistical quantities in the canonical ensemble
3.4. Alternative expressions for the partition function
3.5. The classical systems
3.6. Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble
3.7. Two theorems-the “equipartition” and the “virial
3.8. A system of harmonic oscillators
3.9. The statistics of paramagnetism
3.10. Thermodynamics of magnetic systems: negative temperatures
Problems
The grand canonical ensemble
4.1. Equilibrium between a system and a particle-energy reservoir
4.2. A system in the grand canonical ensemble
4.3. Physical significance of the various statistical quantities
4.4. Examples
4.5. Density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles
4.6. Thermodynamic phase diagrams
4.7. Phase equilibrium and the Clausius-Clapeyron equation
Problems
Formulation of quantum statistics
5.1. Quantum-mechanical ensemble theory: the density matrix
5.2. Statistics of the various ensembles
5.3. Examples
5.4. Systems composed of indistinguishable particles
5.5. The density matrix and the partition function of a system of free particles
5.6. Eigenstate thermalization hypothesis
Problems
The theory of simple gases
6.1. An ideal gas in a quantum-mechanical microcanonical ensemble
6.2. An ideal gas in other quantum-mechanical ensembles
6.3. Statistics of the occupation numbers
6.4. Kinetic considerations
6.5. Gaseous systems composed of molecules with internal motion
6.6. Chemical equilibrium
Problems
ldeal Bose systems
7.1. Thermodynamic behavior of an ideal Bose gas
7.2. Bose-Einstein condensation in ultracold atomic gases
7.3. Thermodynamics of the blackbody radiation
7.4. The field of sound waves
7.5. Inertial density of the sound field
7.6. Elementary excitations in liquid helium II
Problems
ldeal Fermi systems
8.1. Thermodynamic behavior of an ideal Fermi gas
8.2. Magnetic behavior of an ideal Fermi gas
8.3. The electron gas in metals
8.4. Ultracold atomic Fermi gases
8.5. Statistical equilibrium of white dwarf stars
8.6. Statistical model of the atom
Problems
Thermodynamics of the early universe
9.1. Observational evidence of the Big Bang
9.2. Evolution of the temperature of the universe
9.3. Relativistic electrons, positrons, and neutrinos
9.4. Neutron fraction
9.5. Annihilation of the positrons and electrons
9.6. Neutrino temperature
9.7. Primordial nucleosynthesis
9.8. Recombination
9.9. Epilogue
Problems
10.Statistical mechanics of interacting systems: the method of cluster expansions
10.1. Cluster expansion for a classical gas
10.2. Virial expansion of the equation of state
10.3. Evaluation of the virial coeffcients
10.4. General remarks on cluster expansions
10.5. Exact treatment of the second virial coeffcient
10.6. Cluster expansion for a quantum-mechanical system
10.7. Correlations and scattering
Problems
Statistical mechanics of interacting systems: the method of quantized fields
11.1. The formalism of second quantization
11.2. Low-temperature behavior of an imperfect Bose gas
11.3. Low-lying states of an imperfect Bose gas
11.4. Energy spectrum of a Bose liquid
11.5. States with quantized circulation
11.6. Quantized vortex rings and the breakdown of superfluidity
11.7. Low-lying states of an imperfect Fermi gas
11.8. Energy spectrum of a Fermi liquid: Landau’s phenomenological theory
11.9. Condensation in Fermi systems
Problems
Phase transitions: criticality, universality, and scaling
12.1. General remarks on the problem of condensation
12.2. Condensation of a van der Waals gas
12.3. A dynamical model of phase transitions
12.4. The lattice gas and the binary alloy
12.5. Ising model in the zeroth approximation
12.6. Ising model in the first approximation
12.7. The critical exponents
12.8. Thermodynamic inequalities
12.9. Landaus phenomenological theory
12.10. Scaling hypothesis for thermodynamic functions
12.11. The role of correlations and fluctuations
12.12. The critical exponents ν and η
12.13. A final look at the mean field theory
Problems
Phase transitions: exact (or almost exact) results for various models
13.1. One-dimensional fluid models
13.2. The Ising model in one dimension
13.3. The n-vector models in one dimension
13.4. The Ising model in two dimensions
13.5. The spherical model in arbitrary dimensions
13.6. The ideal Bose gas in arbitrary dimensions
13.7. Other models
Problems
Phase transitions: the renormalization group approach
14.1. The conceptual basis of scaling
14.2. Some simple examples of renormalization
14.3. The renormalization group: general formulation
14.4. Applications of the renormalization group
14.5. Finite-size scaling
Problems
Fluctuations and nonequilibrium statistical mechanics
15.1. Equilibrium thermodynamic fluctuations
15.2. The Einstein-Smoluchowski theory of the Brownian motion
15.3. The Langevin theory of the Brownian motion
15.4. Approach to equilibrium: the Fokker-Planck equation
15.5. Spectral analysis of fluctuations: the Wiener-Khintchine theorem
15.6. The fluctuation-dissipation theorem
15.7. The Onsager relations
15.8. Exact equilibrium free energy differences from nonequilibrium measurements
Computer Simulations
16.1. Introduction and statistics
16.2. Monte Carlo simulations
16.3. Molecular dynamics16.3.
16.4. Particle simulations
16.5. Computer simulation caveats
Problems
Appendices
Influence of boundary conditions on the distribution of quantum statesCertain mathematical functions“Volume” and “surface area” of an n-dimensional sphere of radius ROn Bose-Einstein functionsOn Fermi-Dirac functionsA rigorous analysis of the ideal Bose gas and the onset of Bose-Einstein condensationOn Watson functionsThermodynamic relationshipsPseudorandom numbers
Bibliography
Index
內容試閱
The third edition of Statistical mechanics was published in 201l. The new material added at that time focused on Bose-Einstein condensation and degenerate Fermi gas behavior in ultracold atomic gases, finite-size scaling behavior of Bose-Einstein condensates, thermodynamics of the early universe, chemical equilibrium, Monte Carlo and molecular dynamics simulations, correlation functions and scattering, the fluctuation-dissipation theorem and the dynamical structure factor, phase equilibrium and the Clausius-Clapeyron equation, exact solutions of one-dimensional fluid models, exact solution of the two-dimensional lsing model on a finite lattice, pseudorandom number generators, dozens of new homework problems, and a new appendix with a summary of thermodynamic assemblies and associated statistical ensembles.
The new topics added to this fourth edition are:
Eigenstate thermalization hypothesis: Mark Srednicki, Joshua Deutsch, and others discovered that it is possible for nonintegrable isolated macroscopic quantum many-body systems to equilibrate. This overturned the decades-long presumption that equilibrium behavior of isolated many-body systems was precluded because of the unitary time evolution of pure states. Even though an isolated system as a whole will not equilibrate, most macroscopic many-body systems will display equilibrium behavior for local observables, with the system as a whole serving as the reservoir for each subsystem. This behavior is the quantum equivalent to ergodic behavior in classical systems. The exceptions to this are integrable systems and strongly random systems that display many-body localization.Exact equilibrium free energy differences from nonequilibrium measurements: Christo-pher Jarzynski and Gavin Crooks showed that the average of the quantity exp(-βW) along nonequilibrium paths, where W is the external work done on the system during the transformation, depends only on equilibrium free energy differences, independent of the nonequilibrium path chosen or how far out of equilibrium the system is driven, This property is now used to measure equilibrium free energy differences using nonequilibrium transformations in experiments on physical systems and in computer simulations of model systems.We have rewritten Section 5.1 on the density matrix in coordinate-independent form using Hilbert space vectors and Dirac bra-ket notation.We have expanded Appendix H to include both electric and magnetic free energies and have rewritten equations involving magnetic fields throughout the text to express them in SI units.We have ensured that all of the edits and corrections we made in the 2014 “second printing\ of the third edition were included in this edition.We have added over 30 new end-of-chapter problems.We have made minor edits and corrections throughout the text.
R.K.P expressed his indebtedness to many people at the time of the publication of the first and second editions so, at this time, he simply reiterates his gratitude to them. P.D.B. would like to thank his friends and colleagues at the University of Colorado Boulder for the many conversations he has had with them over the years about physics research and pedagogy, many of whom assisted him with the third or fourth edition: Allan Franklin, Noel Clark, Tom DeGrand, John Price, Chuck Rogers, Michael Dubson, Leo Radzihovsky, Victor Gurarie, Michael Hermele, Rahul Nandkishore, Dan Dessau, Dmitry Reznik, Minhyea Lee, Matthew Glaser, Joseph MacLennan, Kyle McElroy, Murray Holland Heather Lewandowski, John Cumalat, Shantha de Alwis, Alex Conley, Jamie Nagle, PaulRomatschke, Noah Finkelstein, Kathy Perkins, John Blanco, Kevin Stenson, Loren Houg, Meredith Betterton, lvan Smalyukh, Colin West, Eleanor Hodby, and Eric Cornell. In addition to those, special thanks are also due to other colleagues who have read sections of the third or fourth edition manuscript, or offered valuable suggestions: Edmond Meyer Matthew Grau, Andrew Sisler, Michael Foss-Feig, Peter Joot, Jeff justice, Stephen H. White, and Harvey Leff.
P.D.B. would like to express his special gratitude to Raj Kumar Pathria for the honor of being asked to join him as coauthor at the time of publication of the third edition of his highly regarded textbook, He and his wife Erika treasure the friendships they have developed with Raj and his lovely wife Raj Kumari Pathria.
P.D.B. dedicates this edition to Erika, for everything.
R.K.P.
P.D.B.

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.