登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』机器学习在量化金融中的应用

書城自編碼: 3598689
分類:簡體書→大陸圖書→計算機/網絡人工智能
作者: 倪好,于光希,郑劲松,董欣
國際書號(ISBN): 9787302565963
出版社: 清华大学出版社
出版日期: 2021-02-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 86.3

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
我的心理医生是只猫
《 我的心理医生是只猫 》

售價:HK$ 49.5
巴拉吉预言
《 巴拉吉预言 》

售價:HK$ 74.8
股权控制战略:如何实现公司控制和有效激励(第2版)
《 股权控制战略:如何实现公司控制和有效激励(第2版) 》

售價:HK$ 98.8
汉译名著·哲学经典十种
《 汉译名著·哲学经典十种 》

售價:HK$ 761.2
成吉思汗传:看历代帝王将相谋略 修炼安身成事之根本
《 成吉思汗传:看历代帝王将相谋略 修炼安身成事之根本 》

售價:HK$ 61.6
爱丁堡古罗马史-罗马城的起源和共和国的崛起
《 爱丁堡古罗马史-罗马城的起源和共和国的崛起 》

售價:HK$ 76.8
自伤自恋的精神分析
《 自伤自恋的精神分析 》

售價:HK$ 52.8
大宋悬疑录:貔貅刑
《 大宋悬疑录:貔貅刑 》

售價:HK$ 74.8

 

編輯推薦:
资深金融数据分析专家多年工作结晶,深入浅出阐释机器学习的数学基础及其在金融数据分析领域的应用
內容簡介:
本书是资深金融数据分析专家多年工作的结晶。书中深入浅出地阐释机器学习的数学基础及其在金融数据分析领域的应用。 全书共分9章。第1章介绍机器学习的发展状况并概述机器学习在金融中的应用。第2章介绍监督学习的通用框架。第3章描述*简单的线性回归模型普通*小二乘法以及正则化方法岭回归和套索回归,并讨论线性模型及非线性的回归和分类方法。第4章讨论监督学习中的树模型,包括决策树、随机森林和梯度提升树。第5章重点介绍三种主要的神经网络:人工神经网络、卷积神经网络和循环神经网络。第6章和第7章介绍无监督学习,主要包括聚类分析和主成分分析。第8章重点介绍强化学习在投资组合优化中的应用。第9章以一个流行的数据挑战项目为例,使用前几章介绍的机器学习方法预测金融违约风险,为读者提供解决实际数据问题的经验。 本书内容丰富,理论严谨,案例翔实,不仅包括完整的理论推导,而且囊括可用于实际项目的案例代码,适合高等院校计算机及相关专业的高年级本科生或者研究生阅读,也可以作为机器学习爱好者及金融分析师等的参考用书。
關於作者:
"倪好,伦敦大学学院数学系副教授。研究方向包括随机分析、金融数学、机器学习和应用等。希望通过分享个人研究成果与经验心得,为对机器学习感兴趣的读者提供严谨简捷的入门,并且侧重于对计量金融方面的应用。
于光希,伦敦大学学院金融数学硕士,专注机器学习在金融中的应用,现任申万宏源证券研究所量化分析师。
郑劲松,德国杜伊斯堡埃森大学经济学博士,有多年量化风险分析与金融建模相关的海外工作经验,现任华泰证券算法工程师。
董欣,伦敦帝国理工学院金融数学博士,专注金融衍生品做市研究,现任城堡证券研究量化分析师。"
目錄
目录
第1章 概述1
11 大数据时代1
12 机器学习2
13 量化金融5
131 金融数据的挑战5
132 机器学习的金融应用5
133 量化金融的未来6
14 新一代宽客6
15 学习路线图7
16 更多资源8
161 Python库8
162 图书与其他在线资源9
17 本书之外10

第2章 监督学习12
21 回归任务框架12
211 模型14
212 损失函数15
213 优化方法16
214 预测和验证25
22 从回归到分类28
221 分类变量28
222 模型28
223 损失函数和优化方法29
224 预测和验证30
225 数值实验32
23 集成方法35
231 集成原理36
232 同质集成法37
233 异质集成法41
24 练习42

第3章 线性回归和正则化43
31 普通最小二乘法43
311 公式推导43
312 优缺点45
32 正则化线性模型46
321 正则化46
322 岭回归47
323 套索回归48
324 数值实验50
325 两种正则化方法的联系52
33 线性模型延伸:基扩展55
34 练习56

第4章 树模型57
41 原理简介57
42 决策树58
421 树结构58
422 模型60
423 回归树61
424 剪枝65
425 特征重要性65
43 随机森林66
44 梯度提升树67
45 数值实验:Iris数据集69
451 决策树的实现69
452 随机森林的实现71
453 梯度提升树的实现72
454 三种树模型的比较72
46 练习74

第5章 神经网络75
51 基本概念75
511 神经元75
512 层77
513 激活函数77
514 张量80
52 人工神经网络81
521 浅层神经网络81
522 多层神经网络84
523 优化方法86
524 数值实验:MNIST数字识别91
53 卷积神经网络95
531 原理简介95
532 图像数据96
533 模型98
534 优化方法107
535 数值实验:Cifar10图像识别107
54 循环神经网络115
541 原理简介115
542 序列数据116
543 模型117
544 优化方法:BPTT118
545 循环神经网络的缺点121
546 LSTM和GRU124
547 数值实验:高频金融数据预测125
55 练习135

第6章 聚类分析136
61 原理简介136
62 聚类分析框架136
621 数据集137
622 相似性138
623 聚类方法138
624 检验指标139
63 K均值法140
631 原理简介140
632 参数选择141
633 K均值法的实现145
64 层次聚类146
641 链接方式146
642 树状图147
643 层次聚类的实现149
65 密度聚类:DBSCAN149
651 原理简介149
652 参数选择151
66 分布聚类152
661 原理简介152
662 最大期望算法152
67 数值实验:聚类分析155
68 练习155

第7章 主成分分析156
71 原理简介156
711 线性变换156
712 奇异值分解157
713 X和Z的方差158
714 降维159
715 实际问题159
716 主成分分析的实现160
72 数值实验:期限结构分析161
721 利率期限结构161
722 数据和观察值163
723 主成分分析与期限结构164
724 主成分分析与对冲168
725 主成分分析与聚类分析171
73 练习172

第8章 强化学习173
81 原理简介173
82 循环强化学习175
83 从RNN到RRL177
84 数值实验:算法交易182
85 练习187

第9章 金融案例研究:违约风险预测188
91 问题设定与数据189
92 探索性数据分析191
921 不平衡数据191
922 缺失值192
923 特征分组192
93 构建第一个分类器193
931 数据预处理193
932 特征工程193
933 训练模型195
934 折外预测196
935 参数调整199
94 模型集成200
95 提交结果202
96 练习202
961 CFM挑战:波动率预测202
962 Kaggle其他金融应用竞赛204

参考文献205
內容試閱
关于作者本人
我目前在伦敦大学学院(University College London,UK)任教,担任数学系的副教授,同时我也是阿兰.图灵研究所(the Alan Turing Institute,UK)数据科学与人工智能研究员。我的研究领域是跨学科的,包括随机分析、金融数学和机器学习。现在我的大部分研究工作集中于时间序列数据的分析与挖掘,包括金融数据分析、手写数字识别和视频分类。
我很早便与数学结缘,在东南大学数学系取得本科学位。本科最后一年我在德国乌尔姆大学交流,开始学习金融数学。之后我取得了牛津大学计算金融硕士和数学博士学位。攻读博士学位期间,我曾在保险公司和投行(投资银行)的量化部门实习过。之后我在布朗大学和牛津大学做过四年博士后。在博士后研习期间,我的研究方向逐渐发生了变化。虽然我的工作和理论数学还是有相关的地方,但大方向由理论数学转向了机器学习。博士后出站时我收到了两份投行量化工作邀请,但最终还是选择了学术界,并从2016年开始任教于伦敦大学学院。
从我的个人经历中可以看出,我并不是一个计算机背景出身的典型机器学习研究人员。因此,我一直希望能有一个机会和更多刚刚接触机器学习的人分享我在转方向过程中的心得,帮助他们少走一些弯路。
关于本书
我在2017年第一次产生了这样的想法:组织一系列关于机器学习的活动,让更多的人,尤其是具有数理背景的人了解机器学习。我自己有很多朋友和同学活跃在业界,他们中的大部分和我有类似的教育背景。在日常交流中,他们对我现在做的研究,尤其对机器学习,表现出了极大的兴趣。但因为工作繁忙,他们自学的时间成本很高。因此我希望组织一系列活动帮助他们快速了解机器学习的理论框架,同时定期讨论金融数学当前的热点问题,以及机器学习在金融中的应用。2018年5月,在朋友的帮助下,我组织了第一阶段的六次活动,主要内容包括机器学习简介、监督学习、编程展示和金融案例研究。
在这些活动中,我收到了很多宝贵的意见和鼓励。这也使我想更进一步,将这些活动材料写成书出版,帮助更多对机器学习和量化金融感兴趣的读者快速入门。机器学习和金融数学都不是遥不可及的名词,我希望本书可以给读者一个愉快的阅读体验。本书不仅会提供机器学习的理论知识,还会结合实际的金融应用案例,帮助读者快速入门机器学习。
关于机器学习毫无疑问,机器学习是当今学界和业界的热点。但机器学习不是万能的,无法做到把数据放进算法就可以解决问题。虽然现在人工智能已经成功应用于很多方面,但离真正的智能还有很远的距离。本书旨在揭开机器学习神秘的面纱,算法背后是有基本的数学和统计理论支撑的,任何一个具有扎实数理功底的高年级本科生都可以快速掌握。
金融数学在近十年发生了很大的变化。传统的金融数学以随机计算为基础,以定价模型为核心。投行量化分析师的工作就是用这些随机模型做衍生品定价。而在基金公司,量化分析师则使用统计方法系统性地寻找交易信号,制定有效的交易策略。但是近几年,出现了越来越多的非结构化数据。无论是买方还是卖方,都投入了大量的资金,探索使用机器学习方法挖掘更多有用的市场信息,以获取超额回报。例如,由Man Group和牛津大学共同建立的Oxford-Man量化金融研究院,在2015年成为牛津大学信息工程系的一部分,与牛津大学的机器学习组有紧密的联系。
未来的世界,越来越需要复合型人才。对于有志于从事量化工作的在校学生,需要适应大环境对人才技术要求的改变。研究机器学习或从事相关工作,通常需要扎实的数理功底和编程能力,并且对实际问题有一定的了解。
目前大多数机器学习研究人员更多关注算法的应用,而对算法的创新或者数学原理关注较少。一些成熟的算法已经被用于解决实际问题,例如使用卷积神经网络进行图像识别。这本身无可厚非,毕竟机器学习是一门应用型学科。从短期数值结果的提高来看,系统性调参可能比理解算法更有效。但我认为,从长期来看,即使只研究机器学习的应用,也应该对算法原理有较好的理解。同样,做算法理论研究的学者也应该尝试具体的应用。理论和应用是相辅相成的,了解算法原理,有助于高效地调参和修正模型,而实际应用会帮助做理论的学者了解什么是重要的问题。
关于未来对于一个人的成长来说,保持好奇心和持续学习是最重要的。我的教育背景是数学出身,在攻读博士学位的三年间,我一直认为自己只喜欢数学因为数学美丽、优雅而复杂。同时我片面地认为编程和应用很容易。而在我做了越来越多交叉学科的研究后,才发现以前的自己是多么无知。所以对于不了解的东西,不要轻言喜欢或不喜欢,很多时候不喜欢可能只是畏难。对于未知的领域,保持长久的好奇心,有助于我们拓宽眼界和提升能力。
最后,我想引用一句自己最喜欢的罗素的话作为结束,与大家共勉:
Three passions, simple but overwhelmingly strong, have governed my life: the longing for love, the search for knowledge, and unbearable pity for the su.ering of mankind.
倪好

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.