新書推薦:
《
全球的全球史:世界各地的研究与实践 历史学的实践丛书
》
售價:HK$
88.0
《
学会思考 批判性思维 思辨与立场 学会提问
》
售價:HK$
86.9
《
AI时代:弯道超车新思维
》
售價:HK$
76.8
《
香事渊略
》
售價:HK$
108.9
《
这就是山海经
》
售價:HK$
107.8
《
中国互联网发展报告(2024)
》
售價:HK$
261.8
《
文明等级论与近代中国
》
售價:HK$
76.8
《
门阀士族:琅邪王氏文化传家
》
售價:HK$
86.9
|
編輯推薦: |
深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。
本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌入将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。
通过阅读本书,你将学到:
NLP的核心概念和各种自然语言处理方法
使用TensorFlow函数创建神经网络以完成NLP任务
将海量数据处理成可用于深度学习应用的单词表示
使用CNN和RNN执行句子分类和语言生成
使用*的RNN(如长短期记忆)执行复杂的文本生成任务
从头开始编写一个真正的神经机器翻译器
未来的
|
內容簡介: |
第1章是对NLP的简单介绍。该章将首先讨论我们需要NLP的原因。接下来,将讨论NLP中一些常见的子任务。之后,将讨论NLP的两个主要阶段,即传统阶段和深度学习阶段。通过研究如何使用传统算法解决语言建模任务,我们将了解传统阶段NLP的特点。然后,将讨论深度学习阶段,在这一阶段中深度学习算法被大量用于NLP。我们还将讨论深度学习算法的主要系列。*后,将讨论一种*基本的深度学习算法:全连接神经网络。该章结束时会提供一份路线图,简要介绍后面的内容。
第2章介绍PythonTensorFlow库,这是我们实现解决方案的主要平台。首先在TensorFlow中编写一段代码,执行一个简单的计算,并讨论从运行代码到得到结果这一过程中到底发生了什么。我们将详细介绍TensorFlow的基础组件。把Tensorflow比作丰富的餐厅,了解如何完成订单,以便进一步加强对TensorFlow的理解。稍后,将讨论TensorFlow的更多技术细节,例如数据结构和操作(主要与神经网络相关)。*后,我们将实现一个全连接的神经网络来识别手写数字。这将帮助我们了解如何使用TensorFlow来实现端到端解决方案。第1章是对NLP的简单介绍。该章将首先讨论我们需要NLP的原因。接下来,将讨论NLP中一些常见的子任务。之后,将讨论NLP的两个主要阶段,即传统阶段和深度学习阶段。通过研究如何使用传统算法解决语言建模任务,我们将了解传统阶段NLP的特点。然后,将讨论深度学习阶段,在这一阶段中深度学习算法被大量用于NLP。我们还将讨论深度学习算法的主要系列。*后,将讨论一种*基本的深度学习算法:全连接神经网络。该章结束时会提供一份路线图,简要介绍后面的内容。
第2章介绍Python TensorFlow库,这是我们实现解决方案的主要平台。首先在TensorFlow中编写一段代码,执行一个简单的计算,并讨论从运行代码到得到结果这一过程中到底发生了什么。我们将详细介绍TensorFlow的基础组件。把Tensorflow比作丰富的餐厅,了解如何完成订单,以便进一步加强对TensorFlow的理解。稍后,将讨论TensorFlow的更多技术细节,例如数据结构和操作(主要与神经网络相关)。*后,我们将实现一个全连接的神经网络来识别手写数字。这将帮助我们了解如何使用TensorFlow来实现端到端解决方案。
第3章首先讨论如何用TensorFlow解决NLP任务。在该章中,我们将讨论如何用神经网络学习单词向量或单词表示。单词向量也称为词嵌入。单词向量是单词的数字表示,相似单词有相似值,不同单词有不同值。首先,将讨论实现这一目标的几种传统方法,包括使用称为WordNet的大型人工构建知识库。然后,将讨论基于现代神经网络的方法,称为Word2vec,它在没有任何人为干预的情况下学习单词向量。我们将通过一个实例来了解Word2vec的机制。接着,将讨论用于实现此目的的两种算法变体:skip-gram和连续词袋(CBOW)模型。我们将讨论算法的细节,以及如何在TensorFlow中实现它们。
第4章介绍与单词向量相关的更高级方法。首先,会比较skip-gram和CBOW,讨论其中哪一种有明显优势。接下来,将讨论可用于提高Word2vec算法性能的几项改进。然后,将讨论一种更新、更强大的词嵌入学习算法:GloVe(全局向量)算法。*后,将在文档分类任务中实际观察单词向量。在该练习中,我们将看到单词向量十分强大,足以表示文档所属的主题(例如,娱乐和运动)。
第5章讨论卷积神经网络(CNN),它是擅长处理诸如图像或句子这样的空间数据的神经网络家族。首先,讨论如何处理数据以及处理数据时涉及哪种操作,以便对CNN有较深的理解。接下来,深入研究CNN计算中涉及的每个操作,以了解CNN背后的数学原理。*后,介绍两个练习。*个练习使用CNN对手写数字图像进行分类,我们将看到CNN能够在此任务上很快达到较高的准确率。接下来,我们将探讨如何使用CNN对句子进行分类。特别地,我们要求CNN预测一个句子是否与对象、人物、位置等相关。
第6章介绍递归神经网络。递归神经网络(RNN)是一个可以模拟数据序列的强大的神经网络家族。首先讨论RNN背后的数学原理以及在学习期间随时间更新RNN的更新规则。然后,讨论RNN的不同变体及其应用(例如,一对一RNN和一对多RNN)。*后,用RNN执行文本生成任务的练习。我们用童话故事训练RNN,然后要求RNN生成一个新故事。我们将看到在持久的长期记忆方面RNN表现不佳。*后,讨论更高级的RNN变体,即RNN-CF,它能够保持更长时间的记忆。
第7章介绍长短期记忆网络。RNN在保持长期记忆方面效果较差,这使我们需要探索能在更长时间内记住信息的更强大技术。我们将在该章讨论一种这样的技术:长短期记忆网络(LSTM)。LSTM功能更强大,并且在许多时间序列任务中表现得优于其他序列模型。首先通过一个例子,研究潜在的数学原理和LSTM的更新规则,以说明每个计算的重要性。然后,将了解为什么LSTM能够更长时间地保持记忆。接下来,将讨论如何进一步提高LSTM预测能力。*后,将讨论具有更复杂结构的几种LSTM变体(具有窥孔连接的LSTM),以及简化LSTM门控循环单元(GRU)的方法。
第8章介绍LSTM的应用:文本生成。该章广泛评估LSTM在文本生成任务中的表现。我们将定性和定量地衡量LSTM产生的文本的好坏程度,还将比较LSTM、窥孔连接LSTM和GRU。*后,将介绍如何将词嵌入应用到模型中来改进LSTM生成的文本。
第9章转到对多模态数据(即图像和文本)的处理。在该章中,我们将研究如何自动生成给定图像的描述。这涉及将前馈模型(即CNN)与词嵌入层及顺序模型(即LSTM)组合,形成一个端到端的机器学习流程。
第10章介绍有关神经机器翻译(NMT)模型的应用。机器翻译指的是将句子或短语从源语言翻译成目标语言。首先讨论机器翻译是什么并简单介绍机器翻译历史。然后,将详细讨论现代神经机器翻译模型的体系结构,包括训练和预测的流程。接下来,将了解如何从头开始实现NMT系统。*后,会探索改进标准NMT系统的方法。
第11章重点介绍NLP的现状和未来趋势。我们将讨论前面提到的系统的相关*发现。该章将涵盖大部分令人兴奋的创新,并让你直观地感受其中的一些技术。
附录向读者介绍各种数学数据结构(例如,矩阵)和操作(例如,矩阵的逆),还将讨论概率中的几个重要概念。然后将介绍Keras,它是在底层使用TensorFlow的高级库。Keras通过隐藏TensorFlow中的一些有难度的细节使得神经网络的实现更简单。具体而言,通过使用Keras实现CNN来介绍如何使用Keras。接下来,将讨论如何使用TensorFlow中的seq2seq库来实现一个神经机器翻译系统,所使用的代码比在第11章中使用的代码少得多。*后,将向你介绍如何使用TensorBoard可视化词嵌入的指南。TensorBoard是TensorFlow附带的便捷可视化工具,可用于可视化和监视TensorFlow客户端中的各种变量。
|
關於作者: |
图珊加内格达拉(Thushan Ganegedara)目前是澳大利亚悉尼大学第三年的博士生。他专注于机器学习和深度学习。他喜欢在未经测试的数据上运行算法。他还是澳大利亚初创公司AssessThreat的首席数据科学家。他在斯里兰卡莫拉图瓦大学获得了理学士学位。他经常撰写有关机器学习的技术文章和教程。此外,他经常通过游泳来努力营造健康的生活方式。
|
目錄:
|
译者序
前言
关于作者
关于审阅者
第1章 自然语言处理简介 1
1.1 什么是自然语言处理 1
1.2 自然语言处理的任务 2
1.3 传统的自然语言处理方法 3
1.3.1 理解传统方法 4
1.3.2 传统方法的缺点 7
1.4 自然语言处理的深度学习方法? 8
1.4.1 深度学习的历史 8
1.4.2 深度学习和NLP的当前状况 9
1.4.3 理解一个简单的深层模型全连接神经网络 10
1.5 本章之外的学习路线 12
1.6 技术工具简介 14
1.6.1 工具说明 15
1.6.2 安装Python和scikit-learn 15
1.6.3 安装Jupyter Notebook 15
1.6.4 安装TensorFlow 16
1.7 总结 17
第2章 理解TensorFlow 18
2.1 TensorFlow是什么 18
2.1.1 TensorFlow入门 19
2.1.2 TensorFlow客户端详细介绍 21
2.1.3 TensorFlow架构:当你执行客户端时发生了什么 21
2.1.4 Cafe Le TensorFlow:使用类比理解TensorFlow 23
2.2 输入、变量、输出和操作 24
2.2.1 在TensorFlow中定义输入 25
2.2.2 在TensorFlow中定义变量 30
2.2.3 定义TensorFlow输出 31
2.2.4 定义TensorFlow操作 31
2.3 使用作用域重用变量 40
2.4 实现我们的第一个神经网络 42
2.4.1 准备数据 43
2.4.2 定义TensorFLow图 43
2.4.3 运行神经网络 45
2.5 总结 46
第3章 Word2vec学习词嵌入 48
3.1 单词的表示或含义是什么 49
3.2 学习单词表示的经典方法 49
3.2.1 WordNet使用外部词汇知识库来学习单词表示 50
3.2.2 独热编码表示方式 53
3.2.3 TF-IDF方法 53
3.2.4 共现矩阵 54
3.3 Word2vec基于神经网络学习单词表示 55
3.3.1 练习:queen = king he she吗 56
3.3.2 为学习词嵌入定义损失函数 58
3.4 skip-gram算法 59
3.4.1 从原始文本到结构化的数据 59
3.4.2 使用神经网络学习词嵌入 60
3.4.3 使用TensorFlow实现skip-gram 67
3.5 连续词袋算法 69
3.6 总结 71
第4章 高级Word2vec 72
4.1 原始skip-gram算法 72
4.1.1 实现原始skip-gram算法 73
4.1.2 比较原始skip-gram算法和改进的skip-gram算法 75
4.2 比较skip-gram算法和CBOW算法 75
4.2.1 性能比较 77
4.2.2 哪个更胜一筹:skip-gram还是CBOW 79
4.3 词嵌入算法的扩展 81
4.3.1 使用unigram分布进行负采样 81
4.3.2 实现基于unigram的负采样 81
4.3.3 降采样:从概率上忽视常用词 83
4.3.4 实现降采样 84
4.3.5 比较CBOW及其扩展算法 84
4.4 最近的skip-gram和CBOW的扩展算法 85
4.4.1 skip-gram算法的限制 85
4.4.2 结构化skip-gram算法 85
4.4.3 损失函数 86
4.4.4 连续窗口模型 87
4.5 GloVe:全局向量表示 88
4.5.1 理解GloVe 88
4.5.2 实现GloVe 89
4.6 使用Word2vec进行文档分类 90
4.6.1 数据集 91
4.6.2 用词向量进行文档分类 91
4.6.3 实现:学习词嵌入 92
4.6.4 实现:词嵌入到文档嵌入 92
4.6.5 文本聚类以及用t-SNE可视化文档嵌入 93
4.6.6 查看一些特异点 94
4.6.7 实现:用K-means对文档进行分类聚类 95
4.7 总结 96
第5章 用卷积神经网络进行句子分类 97
5.1 介绍卷积神经网络 97
5.1.1 CNN基础 97
5.1.2 卷积神经网络的力量 100
5.2 理解卷积神经网络 100
5.2.1 卷积操作 100
5.2.2 池化操作 103
5.2.3 全连接层 104
5.2.4 组合成完整的CNN 105
5.3 练习:在MNIST数据集上用CNN进行图片分类 105
5.3.1 关于数据 106
5.3.2 实现CNN 106
5.3.3 分析CNN产生的预测结果 108
5.4 用CNN进行句子分类 109
5.4.1 CNN结构 110
5.4.2 随时间池化 112
5.4.3 实现:用CNN进行句子分类 112
5.5 总结 115
第6章 递归神经网络 116
6.1 理解递归神经网络 116
6.1.1 前馈神经网络的问题 117
6.1.2 用递归神经网络进行建模 118
6.1.3 递归神经网络的技术描述 119
6.2 基于时间的反向传播 119
6.2.1 反向传播的工作原理 120
6.2.2 为什么RNN不能直接使用反向传播 120
6.2.3 基于时间的反向传播:训练RNN 121
6.2.4 截断的BPTT:更有效地训练RNN 121
6.2.5 BPTT的限制:梯度消失和梯度爆炸 122
6.3 RNN的应用 123
6.3.1 一对一RNN 123
6.3.2 一对多RNN 123
6.3.3 多对一RNN 124
6.3.4 多对多RNN 124
6.4 用RNN产生文本 125
6.4.1 定义超参数 125
6.4.2 将输入随时间展开用于截断的BPTT 125
6.4.3 定义验证数据集 126
6.4.4 定义权重和偏置 126
6.4.5 定义状态持续变量 127
6.4.6 用展开的输入计算隐藏状态和输出 127
6.4.7 计算损失 128
6.4.8 在新文本片段的开头重置状态 128
6.4.9 计算验证输出 128
6.4.10 计算梯度和优化 129
6.4.11 输出新生成的文本块 129
6.5 评估RNN的文本结果输出 130
6.6 困惑度:衡量文本结果的质量 131
6.7 有上下文特征的递归神经网络:更长记忆的RNN 132
6.7.1 RNN-CF的技术描述 132
6.7.2 实现RNN-CF 133
6.7.3 RNN-CF产生的文本 138
6.8 总结 140
第7章 长短期记忆网络 142
7.1 理解长短期记忆网络 142
7.1.1 LSTM是什么 143
7.1.2 更详细的LSTM 144
7.1.3 LSTM与标准RNN的区别 149
7.2 LSTM如何解决梯度消失问题 150
7.2.1 改进LSTM 152
7.2.2 贪婪采样 153
7.2.3 集束搜索 153
7.2.4 使用词向量 154
7.2.5 双向LSTM(BiLSTM) 155
7.3 其他LSTM的变体 156
7.3.1 窥孔连接 156
7.3.2 门循环单元 157
7.4 总结 159
第8章 LSTM应用:文本生成 160
8.1 数据集 160
8.1.1 关于数据集 160
8.1.2 数据预处理 162
8.2 实现LSTM 162
8.2.1 定义超参数 163
8.2.2 定义参数 163
8.2.3 定义LSTM单元及操作 165
8.2.4 定义输入和标签 165
8.2.5 定义处理序列数据所需的序列计算 166
8.2.6 定义优化器 167
8.2.7 随时间衰减学习率 167
8.2.8 做预测 168
8.2.9 计算困惑度(损失) 168
8.2.10 重置状态 169
8.2.11 贪婪采样避免单峰 169
8.2.12 生成新文本 169
8.2.13 生成的文本样例 170
8.3 LSTM与窥孔LSTM和GRU对比 171
8.3.1 标准LSTM 171
8.3.2 门控循环单元(GRU) 172
8.3.3 窥孔LSTM 174
8.3.4 训练和验证随时间的困惑度 175
8.4 改进LSTM:集束搜索 176
8.4.1 实现集束搜索 177
8.4.2 集束搜索生成文本的示例 179
8.5 LSTM改进:用单词替代n-gram生成文本 179
8.5.1 维度灾难 179
8.5.2 Word2vec补救 180
8.5.3 使用Word2vec生成文本 180
8.5.4 使用LSTM-Word2vec和集束搜索生成的文本示例 181
8.5.5 随时间困惑度 182
8.6 使用TensorFlow RNN API 183
8.7 总结 186
第9章 LSTM应用:图像标题生成 188
9.1 了解数据 188
9.1.1 ILSVRC ImageNet数据集 189
9.1.2 MS-COCO数据集 189
9.2 图像标题生成实现路径 191
9.3 使用CNN提取图像特征 193
9.4 实现:使用VGG-16加载权重和推理 193
9.4.1 构建和更新变量 194
9.4.2 预处理输入 195
9.4.3 VGG-16推断 196
9.4.4 提取图像的向量化表达 197
9.4.5 使用VGG-16预测类别概率 197
9.5 学习词嵌入 198
9.6 准备输入LSTM的标题 198
9.7 生成LSTM的数据 199
9.8 定义LSTM 201
9.9 定量评估结果 203
9.9.1 BLEU 203
9.9.2 ROUGE 204
9.9.3 METEOR 204
9.9.4 CIDEr 206
9.9.5 模型随着时间变化的BLEU-4 206
9.10 为测试图像生成标题 207
9.11 使用TensorFlow RNN API和预训练的GloVe词向量 210
9.11.1 加载GloVe词向量 210
9.11.2 清洗数据 212
9.11.3 使用TensorFlow RNN API和预训练的词嵌入 213
9.12 总结 218
第10章 序列到序列学习:神经机器翻译 220
10.1 机器翻译 220
10.2 机器翻译简史 221
10.2.1 基于规则的翻译 221
10.2.2 统计机器翻译(SMT) 222
10.2.3 神经机器翻译(NMT) 223
10.3 理解神经机器翻译 225
10.3.1 NMT原理 225
10.3.2 NMT架构 226
10.4 为NMT系统准备数据 228
10.4.1 训练阶段 229
10.4.2 反转源句 229
10.4.3 测试阶段 230
10.5 训练NMT 230
10.6 NMT推理 231
10.7 BLEU评分:评估机器翻译系统 232
10.7.1 修正的精确度 232
10.7.2 简短惩罚项 233
10.7.3 最终BLEU得分 233
10.8 从头开始实现NMT:德语到英语的翻译 233
10.8.1 数据介绍 234
10.8.2 处理数据 234
10.8.3 学习词嵌入 235
10.8.4 定义编码器和解码器 236
10.8.5 定义端到端输出计算 238
10.8.6 翻译结果 239
10.9 结合词嵌入训练NMT 241
10.9.1 最大化数据集词汇表和预训练词嵌入之间的匹配 241
10.9.2 将嵌入层定义为TensorFlow变量 243
10.10 改进NMT 245
10.10.1 教师强迫 246
10.10.2 深度LSTM 247
10.11 注意力 247
10.11.1 突破上下文向量瓶颈 247
10.11.2 注意力机制细节 248
10.11.3 注意力NMT的翻译结果 253
10.11.4 源句子和目标句子注意力可视化 254
10.12 序列到序列模型的其他应用:聊天机器人 256
10.12.1 训练聊天机器人 256
10.12.2 评估聊天机器人:图灵测试 257
10.13 总结 258
第11章 自然语言处理的现状与未来 259
11.1 NLP现状 259
11.1.1 词嵌入 260
11.1.2 神经机器翻译 264
11.2 其他领域的渗透 266
11.2.1 NLP与计算机视觉结合 266
11.2.2 强化学习 268
11.2.3 NLP生成式对抗网络 269
11.3 走向通用人工智能 270
11.3.1 一个模型学习全部 271
11.3.2 联合多任务模型:为多个NLP任务生成神经网络 272
11.4 社交媒体NLP 273
11.4.1 社交媒体中的谣言检测 274
11.4.2 社交媒体中的情绪检测 274
11.4.3 分析推特中的政治框架 274
11.5 涌现的新任务 275
11.5.1 讽刺检测 275
11.5.2 语言基础 276
11.5.3 使用LSTM略读文本 276
11.6 新兴的机器学习模型 277
11.6.1 阶段LSTM 277
11.6.2 扩张RNN(DRNN) 278
11.7 总结 278
11.8 参考文献 279
附录 数学基础与高级TensorFlow 282
|
|