新書推薦:
《
未来漫游指南:昨日科技与人类未来
》
售價:HK$
97.9
《
新民说·逝去的盛景:宋朝商业文明的兴盛与落幕(上下册)
》
售價:HK$
173.8
《
我从何来:自我的心理学探问
》
售價:HK$
119.9
《
失败:1891—1900 清王朝的变革、战争与排外
》
售價:HK$
85.8
《
送你一匹马(“我不求深刻,只求简单。”看三毛如何拒绝内耗,为自己而活)
》
售價:HK$
64.9
《
秦汉史讲义
》
售價:HK$
151.8
《
万千心理·我的精神分析之道:复杂的俄狄浦斯及其他议题
》
售價:HK$
104.5
《
荷马:伊利亚特(英文)-西方人文经典影印21
》
售價:HK$
107.8
|
內容簡介: |
塞潘斯基编著的《紧李群(影印版)》是“国外数学名著系列”之一,内容包括紧李群、群表示论、调和分析、李代数、阿贝尔李子群等。可供高等院校数学专业研究生、数学类科研人员学习参考。
|
目錄:
|
Preface
1 Compact Lie Groups
1.1 Basic Notions
1.1.1 Manifolds
1.1.2 Lie Groups
1.1.3 Lie Subgroups and Homomorphisms
1.1.4 Compact Classical Lie Groups
1.1.5 Exercises
1.2 Basic Topology
1.2.1 Connectedness
1.2.2 Simply Connected Cover
1.2.3 Exercises
1.3 The Double Cover of SOn
1.3.1 Clifford Algebras
1.3.2 SpinnIR and Pin
1.3.3 Exercises
1.4 Integration
1.4.1 Volume Forms
1.4.2 Invafiant Integration
1.4.3 Fubini''s Theorem
1.4.4 Exercises
2 Representations
2.1 Basic Notions
2.1.1 Definitions
2.1.2 Examples
2.1.3 Exercises
2.2 Operations on Representations
2.2.1 Constructing New Representations
2.2.2 Irreducibility and Schur''s Lemma
2.2.3 Unitarity
2.2.4 Canonical Decomposition
2.2.5 Exercises
2.3 Examples of Irreducibility
2.3.1 SU2 and VnC2
2.3.2 SOn and Harmonic Polynomials
2.3.3 Spin and Half-Spin Representations
2.3.4 Exercises
3 Harmonic Analysis
3.1 Matrix Coefficients
3.1.1 Schur Orthogonality
3.1.2 Characters
3.1.3 Exercises
3.2 Infinite-Dimensional Representations
3.2.1 Basic Definitions and Schur''s Lemma
3.2.2 G-Finite Vectors
3.2.3 Canonical Decomposition
3.2.4 Exercises
3.3 The Peter-Weyl Theorem
3.3.1 The Left and Right Regular Representation
3.3.2 Main Result
3.3.3 Applications
3.3.4 Exercises
3.4 Fourier Theory
3.4.1 Convolution
3.4.2 Plancherel Theorem
3.4.3 Projection Operators and More General Spaces
3.4.4 Exercises
4 Lie Algebras
4.1 Basic Definitions
4.1.1 Lie Algebras of Linear Lie Groups
4.1.2 Exponential Map
4.1.3 Lie Algebras for the Compact Classical Lie Groups
4.1.4 Exercises
4.2 Further Constructions
4.2.1 Lie Algebra Homomorphisms
4.2.2 Lie Subgroups and Subalgebras
4.2.3 Covering Homomorphisms
4.2.4 Exercises
5 Abelian Lie Subgroups and Structure
5.1 Abelian Subgroups and Subalgebras
5.1.1 Maximal Tori and Caftan Subalgebras
5.1.2 Examples
5.1.3 Conjugacy of Cartan Subalgehras
5.1.4 Maximal Torus Theorem
5.1.5 Exercises
5.2 Structure
5.2.1 Exponential Map Revisited
5.2.2 Lie Algebra Structure
5.2.3 Commutator Theorem
5.2.4 Compact Lie Group Structure
5.2.5 Exercises
6 Roots and Associated Structures
6.1 Root Theory
6.1.1 Representations of Lie Algebras
6.1.2 Complexification of Lie Algebras
6.1.3 Weights
6.1.4 Roots
6.1.5 Compact Classical Lie Group Examples
6.1.6 Exercises
6.2 The Standard s[2, C Triple
6.2.1 Cartan Involution
6.2.2 Killing Form
6.2.3 The Standard sl2, C and su2 Triples
6.2.4 Exercises
6.3 Lattices
6.3.1 Definitions
6.3.2 Relations
6.3.3 Center and Fundamental Group
6.3.4 Exercises
6.4 Weyl Group
6.4.1 Group Picture
6.4.2 Classical Examples
6.4.3 Simple Roots and Weyl Chambers
6.4.4 The Weyl Group as a Reflection Group
6.4.5 Exercises
7 Highest Weight Theory
7.1 Highest Weights
7.1.1 Exercises
7.2 Weyl Integration Formula
7.2.1 Regular Elements
7.2.2 Main Theorem
7.2.3 Exercises
7.3 Weyl Character Formula
7.3.1 Machinery
7.3.2 Main Theorem
7.3.3 Weyl Denominator Formula
7.3.4 Weyl Dimension Formula
7.3.5 Highest Weight Classification
7.3.6 Fundamental Group
7.3.7 Exercises
7.4 Borel-Weil Theorem
7.4.1 Induced Representations
7.4.2 Complex Structure on GT
7.4.3 Holomorphic Functions
7.4.4 Main Theorem
7.4.5 Exercises
References
Index
|
|