登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』人工智能:一种现代的方法(第3版)(大学计算机教育国外著名教材系列(影印版))

書城自編碼: 1770760
分類:簡體書→大陸圖書→教材研究生/本科/专科教材
作者: [美]拉塞尔
國際書號(ISBN): 9787302252955
出版社: 清华大学出版社
出版日期: 2011-07-01
版次: 1 印次: 1
頁數/字數: 1132/
書度/開本: 16开 釘裝: 平装

售價:HK$ 466.1

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
东法西渐:19世纪前西方对中国法的记述与评价
《 东法西渐:19世纪前西方对中国法的记述与评价 》

售價:HK$ 207.0
养育男孩:官方升级版
《 养育男孩:官方升级版 》

售價:HK$ 51.8
小原流花道技法教程
《 小原流花道技法教程 》

售價:HK$ 112.7
少女映像室 唯美人像摄影从入门到实战
《 少女映像室 唯美人像摄影从入门到实战 》

售價:HK$ 113.9
詹姆斯·伍德系列:不负责任的自我:论笑与小说(“美国图书评论奖”入围作品 当代重要文学批评家詹姆斯·伍德对“文学中的笑与喜剧”的精湛研究)
《 詹姆斯·伍德系列:不负责任的自我:论笑与小说(“美国图书评论奖”入围作品 当代重要文学批评家詹姆斯·伍德对“文学中的笑与喜剧”的精湛研究) 》

售價:HK$ 89.7
武当内家散手
《 武当内家散手 》

售價:HK$ 51.8
诛吕:“诸吕之乱”的真相与吕太后时期的权力结构
《 诛吕:“诸吕之乱”的真相与吕太后时期的权力结构 》

售價:HK$ 102.4
炙野(全2册)
《 炙野(全2册) 》

售價:HK$ 80.3

 

建議一齊購買:

+

HK$ 243.6
《深度学习》
+

HK$ 50.8
《人工智能中的深度结构学习》
+

HK$ 114.6
《深度学习与计算机视觉 算法原理、框架应用与代码实现》
+

HK$ 100.1
《多智能体机器学习:强化学习方法》
+

HK$ 129.1
《现代操作系统(原书第4版)》
+

HK$ 114.6
《MATLAB计算机视觉与深度学习实战》
編輯推薦:
《人工智能一种现代的方法第3版影印版》作者拉塞尔、诺维格是“大学计算机教育国外著名教材系列”之一,是高等院校本科生和研究生人工智能课的首选教材。全书仍分为八大部分:第一部分“人工智能”,第二部分“问题求解”,第三部分“知识与推理”,第四部分“规划”,第五部分“不确定知识与推理”,第六部分“学习”,第七部分“通信、感知与行动”,第八部分“结论”。
《人工智能一种现代的方法第3版影印版》适合于不同层次和领域的研究人员及学生。
內容簡介:
《人工智能一种现代的方法第3版影印版》作者拉塞尔、诺维格是最权威、最经典的人工智能教材,已被全世界100多个国家的1200多所大学用作教材。

《人工智能一种现代的方法第3版影印版》的最新版全面而系统地介绍了人工智能的理论和实践,阐述了人工智能领域的核心内容,并深入介绍了各个主要的研究方向。全书仍分为八大部分:第一部分“人工智能”,第二部分“问题求解”,第三部分“知识与推理”,第四部分“规划”,第五部分“不确定知识与推理”,第六部分“学习”,第七部分“通信、感知与行动”,第八部分“结论”。《人工智能一种现代的方法第3版影印版》既详细介绍了人工智能的基本概念、思想和算法,还描述了其各个研究方向最前沿的进展,同时收集整理了详实的历史文献与事件。另外,《人工智能一种现代的方法第3版影印版》的配套网址为教师和学生提供了大量教学和学习资料。

《人工智能一种现代的方法第3版影印版》适合于不同层次和领域的研究人员及学生,是高等院校本科生和研究生人工智能课的首选教材,也是相关领域的科研与工程技术人员的重要参考书。
目錄
I Artificial Intelligence
1 Introduction
1.1 What Is AI?
1.2 The Foundations of Artificial Intelligence
1.3 The History of Artificial Intelligence
1.4 The State of the Art
1.5 Summary, Bibliographical and Historical Notes, Exercises
2 Intelligent Agents
2.1 Agents and Environments
2.2 Good Behavior: The Concept of Rationality
2.3 The Nature of Environments
2.4 The Structure of Agents
2.5 Summary, Bibliographical and Historical Notes, Exercises
II Problem-solving
3 Solving Problems by Searching
3.1 Problem-Solving Agents
3.2 Example Problems r
3.3 Searching for Solutions
3.4 Uninformed Search Strategies
3.5 Informed Heuristic Search Strategies
3.6 Heuristic Functions
3.7 Summary, Bibliographical and Historical Notes, Exercises
4 Beyond Classical Search
4.1 Local Search Algorithms and Optimization Problems
4.2 Local Search in Continuous Spaces
4.3 Searching with Nondeterministic Actions
4.4 Searching with Partial Observations
4.5 Online Search Agents and Unknown Environments
4.6 Summary, Bibliographical and Historical Notes, Exercises
5 Adversariai Search
5.1 Games
5.2 Optimal Decisions in Games
5.3 Alpha-Beta Pruning
5.4 Imperfect Real-Time Decisions
5.5 Stochastic Games
5.6 Partially Observable Games
5.7 State-of-the-Art Game Programs
5.8 Alternative Approaches
5.9 Summary, Bibliographical and Historical Notes, Exercises
6 Constraint Satisfaction Problems
6.1 Defining Constraint Satisfaction Problems
6.2 Constraint Propagation: Inference in CSPs
6.3 Backtracking Search for CSPs
6.4 Local Search for CSPs
6.5 The Structure of Problems
6.6 Summary, Bibliographical and Historical Notes, Exercises
III Knowledge, reasoning, and planning
7 Logical Agents
7.1 Knowledge-Based Agents
7.2 The Wumpus World
7.3 Logic
7.4 Propositional Logic: A Very Simple Logic
7.5 Propositional Theorem Proving
7.6 Effective Propositional Model Checking
7.7 Agents Based on Propositional Logic
7.8 Summary, Bibliographical and Historical Notes, Exercises
8 First-Order Logic
8.1 Representation Revisited
8.2 Syntax and Semantics of First-Order Logic
8.3 Using First-Order Logic.
8.4 Knowledge Engineering in First-Order Logic
8.5 Summary, Bibliographical and Historical Notes, Exercises
9 Inference in First-Order Logic
9.1 Propositional vs. First-Order Inference
9.2 Unification and Lifting
9.3 Forward Chaining
9.4 Backward Chaining
9.5 Resolution
9.6 Summary, Bibliographical and Historical Notes, Exer-cises
10 Classical Planning
10.1 Definition of Classical Planning
10.2 Algorithms for Planning as State-Space Search
10.3 Planning Graphs
10.4 Other Classical Planning Approaches
10.5 Analysis of Planning Approaches
10.6 Summary, Bibliographical and Historical Notes, Exercises
11 Planning and Acting in the Real World
11.1 Time,. Schedules, and Resources
11.2 Hierarchical Planning
11.3 Planning and Acting in Nondeterministic Domains
11.4 Multiagent Planning
11.5 Summary, Bibliographical and Historical Notes, Exercises
12 Knowledge Representation
12.1 Ontological Engineering
12.2 Categories and Objects
12.3 Events
12.4 Mental Events and Ment.al Objects
12.5 Reasoning Systems for Categories
12.6 Reasoning with Default Information
12.7 The Internet Shopping World
12.8 Summary, Bibliographical and Historical Notes, Exercises
IV Uncertain knowledge and reasoning
13 Quantifying Uncertainty
13.1 Acting under Uncertainty
13.2 Basic Probability Notation
13.3 Inference Using Full Joint Distributions
13.4 Independence
13.5 Bayes'' Rule and Its Use
13.6 The Wumpus World Revisited
13.7 Summary, Bibliographical and Historical Notes, Exercises
14 Probabilistic Reasoning
14.1 Representing Knowledge in an Uncertain Domain
14.2 The Semantics of Bayesian Networks
14.3 Efficient Representation of Conditional Distributions
14.4 Exact Inference in Bayesian Networks
14.5 Approximate Inference in Bayesian Networks
14.6 Relational and First-Order Probability Models
14.7 Other Approaches to Uncertain ReasOning
14.8 Summary, Bibliographical and Historical Notes, Exercises
15 Probabilistic Reasoning over Time
15.1 Time and Uncertainty
15.2 Inference in Temporal Models
15.3 Hidden Markov Models
15.4 Kalman Filters
15.5 Dynamic Bayesian Networks
15.6 Keeping Track of Many Objects
15.7 Summary, Bibliographical and Historical Notes, Exercises
16 Making Simple Decisions
16.1 Combining Beliefs and Desires under Uncertainty
16.2 The Basis of Utility Theory
16.3 Utility Functions
16.4 Multiattribute Utility Functions
16.5 Decision Networks
16.6 The Value of Information
16.7 Decision-Theoretic Expert Systems
16.8 Summary, Bibliographical and Historical Notes, Exercises
17 Making Complex Decisions
17.1 Sequential Decision Problems
17.2 Value Iteration
17.3 Policy Iteration
17.4 Partially Observable MDPs
17.5 Decisions with Multiple Agents: Game Theory
17.6 Mechanism Design
17.7 Summary, Bibliographical and Historical Notes, Exercises
V Learning
18 Learning from Examples
18.1 Forms of Learning
18.2 Supervised Learning
18.3 Learning Decision Trees
18.4 Evaluating and Choosing the Best Hypothesis
18.5 The Theory of Learning
18.6 Regression and:Classification with Linear Models
18.7 Artificial Neural Networks
18.8 Nonparametric Models
18.9 Support Vector Machines
18.10 Ensemble Learning
18. I 1 Practical Machine Learning
18.12 Summary, Bibliographical and Historical Notes, Exercises
19 Knowledge in Learning
19.1 A Logical Formulation of Learning
19.2 Knowledge in Learning
19.3 Explanation-Based Learning
19.4 Learning Using Relevance Information
19.5 Inductive Logic Programming
19.6 Summary, Bibliographical and Historical Notes, Exercises
20 Learning Probabilistic Models
20:1 Statistical Learning
20.2 Learning with Complete'' Data
20.3 Learning with Hidden Variables: The EM Algorithm
20.4 Summary, Bibliographical and Historical Notes, Exercises
21 Reinforcement Learning
21.1 Introduction
21.2 Passive Reinforcement Learning
21.3 Active Reinforcement Learning
21.4 Generalization in Reinforcement Learning
21.5 Policy Searcti
21.6 Applications of Reinforcement Learning
21.7 Summary, Bibliographical and Historical Notes, Exercises
VI Communicating, perceiving, and acting
22 Natural Language Pi''ocessing
22.1 Language Models
22.2 Text Classification
22.3 Information Retrieval
22.4 Information Extraction
22.5 Summary, Bibliographical and Historical Notes, Exercises
23 Natural Language for Communication
23.1 Phrase Structure Grammars
23.2 Syntactic Analysis Parsing
23.3 Augmented Grammars and Semantic Interpretation
23.4 Machine Translation
23.5 Speech Recognition
23.6 Summary, Bibliographical and Historical Notes, Exercises
24 Perception
24.1 Image Formation
24.2 Early Image-Processing Operations
24.3 Object Recognition by Appearance
24.4 Reconstructing the3D World
24.5 Object Recognition from Structural Information
24.6 .Using Vision
24.7 Summary, Bibliographical and Histiarical Notes, Exercises
25 Robotics
25.1 Introduction
25.2 Robot Hardware
25.3 Robotic Perception
25.4 Planning to Move
25.5 Planning Uncertain Movements
25.6 Moving
25.7 Robotic Software Architectures
25.8 Application Domains .
25.9 Summary, Bibliographical and Historical Notes, Exercises
VII Conclusions
26 Philosophical Foundations
26.1 Weak AI: Can Machines Act Intelligently?
26.2 Strong AI: Can Machines Really Think?
26.3 The Ethics and Risks of Developing Artificial Intelligence
26.4 Summary, Bibliographical and Historical Notes, Exercises
27 AI: The Present and Future
27.1 Agent Components
27.2 Agent Architectures
27.3 Are We Going in the Right Direction?
27.4 What If AI Does Succeed?
A Mathematical background
A. 1 Complexity Analysis and O0 Notation
A.2 Vectors, Matrices, and Linear Algebra
A.3 Probability Distributions
B Notes on Languages and Algorithms
B.1 Defining Languages with Backus-Naur Form BNF
B.2 Describing Algorithms with Pseudocode
B.3 Online Help
Bibliography
Index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.