新書推薦:
《
周易
》
售價:HK$
45.8
《
东南亚的传统与发展
》
售價:HK$
69.0
《
乾隆制造
》
售價:HK$
87.4
《
资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册)
》
售價:HK$
296.7
《
明代社会变迁时期生活质量研究
》
售價:HK$
308.2
《
律令国家与隋唐文明
》
售價:HK$
74.8
《
紫云村(史杰鹏笔下大唐小吏的生死逃亡,新历史主义小说见微之作,附赠5张与小说内容高度契合的宣纸彩插)
》
售價:HK$
101.2
《
现代吴语的研究(中华现代学术名著3)
》
售價:HK$
66.7
|
編輯推薦: |
!! 得到创始人罗振宇、360公司创始人周鸿祎理性推荐,了解大数据预测必读书目;
!!获奖作品,全球翻译为9种语言,美国30多所大学选为课堂教材;
!!预测分析顶ji专家生动有趣解说数据与预测技术,本书是了解预测技术不容错过的实践指导手册,修订版增加zui新企业研究案例;
!!一点预测,无限可能。预测连接过去与未来,预测技术的应用贯穿商业、政界、医疗、高校和执法系统。身处预测繁荣发展的时代,想知道我们的世界会因为预测变成什么样子,来读《大数据预测》。
|
內容簡介: |
令人着迷的,有趣的 《西雅图邮讯报》
全书充满了生动的例子《金融时报》
作为大数据的核心应用,预测正在繁荣发展。它改写了行业,驱动世界向前。潮流引领者比如大通银行、脸谱网、谷歌、HP、IBM、Match.com、网飞公司、优步等正借助大数据的力量对人类的行为进行预测其中也包括你的。公司、政府、执法机关、医院和高校正利用来自预测的力量,预测你否会点击、购买、撒谎或者死去。
为什么要对人类的行为进行预测?我们有充分的理由:预测人类行为,可以战胜危机、促进销售、提升医疗保健、简化生产流程、拦截垃圾信息、优化社交网络、强化打击犯罪,以及赢得选举,等等。
预测由世界上*有效、*丰富的非自然资源数据驱动。作为人们各种日常及社会活动的副产品,数据正在被不断被记录和整理,并日渐成为一座金矿。大数据技术通过对数据进行学习,正不断释放数据的能量。 令人着迷的, 有趣的 《西雅图邮讯报》
全书充满了生动的例子《金融时报》
作为大数据的核心应用,预测正在繁荣发展。它改写了行业,驱动世界向前。潮流引领者比如大通银行、脸谱网、谷歌、HP、IBM、Match.com、网飞公司、优步等正借助大数据的力量对人类的行为进行预测其中也包括你的。公司、政府、执法机关、医院和高校正利用来自预测的力量,预测你否会点击、购买、撒谎或者死去。
为什么要对人类的行为进行预测?我们有充分的理由:预测人类行为,可以战胜危机、促进销售、提升医疗保健、简化生产流程、拦截垃圾信息、优化社交网络、强化打击犯罪,以及赢得选举,等等。
预测由世界上*有效、*丰富的非自然资源数据驱动。作为人们各种日常及社会活动的副产品,数据正在被不断被记录和整理,并日渐成为一座金矿。大数据技术通过对数据进行学习,正不断释放数据的能量。
在这本内容丰富、有趣的书中,预测分析*专家埃里克西格尔解读了预测是如何工作和影响我们每个人的。它不仅是一本技术实践指导手册,更通过提供新的研究案例以及前沿技术,帮助普通读者和专业人士更好地了解大数据预测。
|
關於作者: |
埃里克西格尔, 博士, Predictive Analytics World创始人,《预测时报》( The Predictive Analytics Times)主编,前哥伦比亚大学教授,预测分析领域知名演讲人、教育家和领导者。
|
目錄:
|
序 言
前 言 预测分析的职业风险
导 论 预测效应
第一章 升空!预测开始发威
开始实践
人人爱预言,虽然不精确
防护预测
价值100 万美元的无声革命
个性化的危险
预测分析程序的安装:迂回和拖延
运行过程中
基本要素:观察
行动就是决策
危险的启动
呼叫休斯敦,我们有麻烦了
能做到的小模型
休斯敦,发射
热情的科学家
让预测走入内心
第二章 权力越大,责任越大:惠普、Target超市、警察和美国国家安全局会窥探你的秘密
Target 超市的预测及其预测目标
意味深长的停顿
我的15 分钟
曝光于聚光灯下
你无法禁锢那些可传输的东西
法律与秩序:政策和数据监管
数据之战
数据挖掘并不是攫取数据
惠普自我学习
洞悉员工还是侵犯隐私
辞职风险:我不干了!
洞见:辞职背后的因素
危险品
辞职风险评估的价值
预测犯罪,提前杜绝犯罪
数据犯罪和犯罪数据
无法测量的机器风险
偏见的轮回
好的预测 坏的预测
第三章 数据效应:彩虹之后的饕餮
焦虑指数
将情绪可视化
在数据里寻宝
一切都数据化
把所有舱门都封死:信息太多了
谁的数据会成为你的囊中之物?
彩虹之末
预测之汁
遥远、奇特和惊人的洞察力
有关系,并不意味着是因果关系
第四章 学习的机器:大通银行对房产抵押风险的预测分析
男孩与银行的相遇
银行面临着风险
预测抵御风险
风险业务
学习机器
创建机器学习
从负面经验中学习
机器如何学习
你可以决定决策树的规模
计算机,为自己编程吧
学吧,宝贝
越大越好
过度学习:假设太多
归纳之谜
机器学习的艺术和科学
感觉真实:测试数据
去粗取精是艺术
在大通银行应用分类回归决策树
摇钱树
回归为何显微镜无法观察到宇宙碰撞
后续
第五章 集团效应:Netflix、众包以及增压预测
业余火箭科学家
黑马
思想外包:集思广益
众包如星火燎原
生于忧患
联合国
元学习
两个预测模型的组合
好戏在后头
集体信息
群体和模型的智慧
一袋子模型
集体智慧开始发威
泛化悖论:过犹不及
挑战极限
第六章 沃森和《危险边缘》节目
文本分析
英语的爱恨情仇
在理解问题之后就要回答
知识终极源泉
人工智能悖论
学习回答问题
学人走路,学人说话
更好的捕鼠器
应答机器
投机取巧的《危险边缘》
从证据中寻找答案
基础知识,亲爱的沃森
证据如山
用组合模型来判断证据
组合模型的组合
机器学习使自然语言处理成为可能
自信但不自负
需要速度
双重危险沃森会赢吗?
《危险边缘》的惶恐
为了胜利
比赛之后:荣誉、嘉奖和崇拜
非对称性IBM 人工智能
对的预测
第七章 用数字说话:挪威电信和美国合众银行工程师
如何通过预测来施加影响
搅拌吧,用力搅拌
沉睡的狗
要预测新的内容
眼睛看不到
预测说服
具有说服性的选择
商业刺激和商业反馈
定量人性
量子人性他是否可被影响?
通过上提模型预测影响力
银行业对影响力的运用
预测错误之事
响应上提模型
上提模型的原理
上提模型如何发挥作用
说服效应
不同行业的影响
让移动客户不移动
结 语
|
內容試閱:
|
本书旨在通过量化方法来预测人类的行为。人类在此方面的最初实践是在第二次世界大战时期。1940 年,控制论之父诺伯特维纳开始尝试预测德国空军飞行员的行为,目的是消灭这些纳粹空中力量。其预测方法是,观测德国飞机运动的轨迹,推测飞行员可能采取的机动规避动作,由此推断飞机接下来所处的位置并用高射炮将其击落。然而,维纳只能推断出飞机下一秒的飞行轨迹,要想精确炮击飞机,必须预测飞机至少20 秒内的飞行轨迹。
在埃里克西格尔的书中,你将看到许多预测案例,这些案例与维纳预测德国飞机的案例相比要精准许多。与二战时期相比,目前计算机的运算性能有了极大的提升,数据的丰富程度也非维纳之时可比。因此,银行、零售商、政治团体、医院以及其他众多机构,都在通过计算机数据处理来预测某些特定人群的行为,进而赢取客户、赢得选举或治愈疾病。
在本人看来,这些预测行为总体上是有益于人类发展的。在疾病治疗、打击犯罪以及反恐等领域,预测能挽救生命;在商业广告领域,预测能让广告定位更加精准,从而保护森林(减少无效纸质广告和宣传册的发放)、节省受众的时间和精力;在政治领域,那些相信科学预测方法的政治候选人会有更大的胜算。
然而,正如西格尔在本书开篇坦诚指出的那样,这些方法也可能产生问题。西格尔引述了电影《蜘蛛侠》中的台词力量越大,责任越大来说明这一点。其引申意义是,人类必须谨慎运用预测模型,否则其效用和益处就会大打折扣。与其他重要发明或革命性创新成果相似,预测分析本身并无是非对错之分,但作为工具,它会带来或善或恶的结果。要想避免预测分析的不正当应用,我们首先必须知晓预测分析究竟都能做什么,随着对本书阅读的深入,相信你会对此问题形成自己的见解。
本书的重点是预测分析,这是诸多分析方法中的一种,是最有趣和最重要的分析方法。在我看来,纯粹的描述性分析已经过时了,因为它只是记录过去发生的事情,无法真正说明这些事情为何会发生。此外,我也经常在自己的书里提到第三种分析方法,即规范性分析,也就是通过控制实验或定向优化来告诉人们应该怎么做。但这些数理分析法的应用范围较预测分析要小许多。
本书内容及其背后的思想与纳西姆尼古拉斯塔勒布的思想恰恰相反。塔勒布在《黑天鹅》等书中提到,由于世界充满偶然性且复杂事物的发展总是具有内在的不可预测性,因此预测行为注定会有失误。毫无疑问,塔勒布的话是有道理的,世界上总会有不可预测的黑天鹅事件,但大部分人类行为都具有惯常性和可预测性。西格尔在本书中所给出的大量成功预测的案例表明,世界上大部分天鹅是白色的。
同时,西格尔也在试图避免陷入大数据的陈词滥调。尽管书中的某些案例具有大数据分析的特征,即数据量庞杂无序以致难以用传统关系数据库进行分析,但预测分析的关键点不在于数据的规模或繁复程度,而在于如何对待数据。我认为,通常,大数据不过是小算术,某些大数据领域从业者所做的不过是用宏大数据来装点门面。其价值与真正的预测模型相比,自然有云泥之别。
西格尔在本书中所阐述的理念复杂精巧,但其行文却浅显易懂,无论读者是否熟悉数理分析,都可读懂本书。书中包含了大量的实际案例和分析图表,笔触通俗诙谐。即便是非数理分析专业人士,也应该好好阅读本书,因为在现实生活中,任何人的行为都免不了成为他人分析和预测的对象。此外,非数理分析专业人士也免不了要在实践中学习预测模型、评估模型效果并根据预测模型的结果采取适当的行动。
总而言之,我们所处的是讲究预测的社会。要想在这样的社会中生存发展,最好的方法就是去理解预测模型的目标、方法以及限制,要想做到这一点,最好的方法莫过于阅读本书。
托马斯H. 达文波特
巴布森学院杰出教授
麻省理工学院数字业务中心成员,德勤分析高级顾问
国际数据分析研究所联合创始人
《数据分析竞争法》联合作者
价值100 万美元的无声革命
当组织采用预测分析时,其意义不啻发动了一支庞大军队,只不过这是由蚂蚁组成的军队。这些蚂蚁会走上组织运营的各大前线,与消费者、学生或病人等服务对象直接接触。之后,这个蚂蚁军团会在预测结果的引导下改善数百个决策。这一过程可能并不是轰轰烈烈的,但用心观察其综合效果之后,会发现这些细小变化所产生的合力。每一个被改善的决策本身可能都显得无足轻重,但成千上万的决策合起来就大为不同。2005 年,某位客户让我想办法提高他网站的点击量,为此我把自己埋在了相关数据中,希望能找出办法帮助这位客户。这位客户希望其网页上的广告能获得更多的点击量。这关乎收入,广告的点击量越多,这位客户的收入就越高。这家网站在创办几年后已拥有数千万用户,用户数据大概有5000 万条,这就是用来做预测的宝贵的原始材料库,而预测的对象竟然是:点击!
广告是媒体不可分割的部分,无论是纸媒、电视还是网络媒体都离不开广告。本杰明富兰克林曾说,人生中不可避免的两样东西是死亡和税。如果他现在还活着,一定会加上第三样东西:广告。互联网巨头Google 承认,广告是其最大的收入来源。Facebook也是如此 。
但对于我要研究的这家网站来说,广告的功能略有不同,只要能预测用户的点击率,其潜在收益就会更大。这家网站提供搜索高校奖学金的服务,在美国所有准备上大学的高中生中,大约有13 都是这家网站的用户。这虽是不显眼的细分市场,但对于许多大学和军校的招生工作人员来说,却是不容错过的网站。在该网站上,有一则大学招生广告很霸气,它自称是美国创新型教育的领导者,上面还附加了链接让用户点击。不难想象,一些提供学生贷款的机构也选择在这家网站上投放广告,让报考学生没有财务上的后顾之忧。这些广告商为每次点击支付25 美元。对于网站而言,如果一次点击就能换来这样丰厚的收入,那真是太棒了。此外,网站上的广告与网站主题紧密相关,而网站的用户也有很强的目的性,因此平均下来每100 次点击就能产生5 笔成功交易,这是令普通网站难以企及的业绩!因此,拥有这家网站的猎头公司从中获利颇丰。任何微小的改善都意味着总收入的显著提升。
但要想改善用户的广告选择却不是件容易的事。网页切换时,用户面前可能会出现很多广告。最难的就是让用户点击最适合他们的广告链接。目前,网站根据各广告的平均点击率来排序,完全没有考虑用户的独特需求。因此,点击最多的广告总是摆在最显眼的位置。这样的安排降低了广告与单个用户的匹配度,而且广告一旦被推到显眼的位置,就很难被替换下来,因为大量用户总是会不经意地点击最显眼处的链接。某些大学对每次点击都愿意支付高价,而且因为位置显眼,其广告链接的点击率也很高。因此,似乎没有理由用冷门的广告去替换主流广告,因为这样做很可能会失去唾手可得的收入。
|
|