新書推薦:
《
思考的框架3:风靡华尔街的思维训练法
》
售價:HK$
64.9
《
被记忆的西周史(中山大学中珠学术译丛)
》
售價:HK$
151.8
《
森林疗法:拥抱大自然、获得幸福的季节性方法
》
售價:HK$
74.8
《
希腊人(伊恩·莫里斯文明史系列)
》
售價:HK$
185.9
《
亚马逊六页纸 如何高效开会、写作、完成工作
》
售價:HK$
76.8
《
世界巨变:严复的角色(王中江著作系列)
》
售價:HK$
110.0
《
塔西佗(全二册)(二十世纪人文译丛)
》
售價:HK$
396.0
《
(棱镜精装人文译丛)思想的假死
》
售價:HK$
63.8
|
編輯推薦: |
《数学女孩》
日本数学会推荐 绝赞的数学科普书
原版全系列累计销量突破27万册
日本数学会出版奖得主结城浩热销力作
在动人的故事中走近数学,在青春的浪漫中理解数学
拨开层层密林,找出宝藏,数学就是这样一种令人兴奋的寻宝游戏。比拼智力,寻找很牛的解法,数学就是这样一场激烈的战斗。
——结城浩
|
內容簡介: |
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的数学科普书”。
《数学女孩2:费马大定理》有许多巧思。每一章针对不同议题进行解说,再于末尾一章切入正题——费马大定理。作者巧妙地以每一章的概念作为拼图,拼出被称为“世纪谜题”的费马大定理的大概证明。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
《数学女孩4:随机算法》以“随机算法”为主题,从纯粹的数学和计算机程序设计两个角度对随机算法进行了细致的讲解。内容涉及排列组合、概率、期望、线性法则、矩阵、顺序查找算法、二分查找算法、冒泡排序算法和快速排序算法等。整本书一气呵成,非常适合对数学和算法感兴趣的初高中生以及成人阅读。
《数学女孩5:伽罗瓦理论》从鬼脚图讲起,结合二次方程式的求根公式、尺规作图、群和域等知识,最终带领读者进入伽罗瓦理论的世界,还原伽罗瓦短暂的一生中璀璨不朽的数学成就。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
《数学女孩6:庞加莱猜想》以百年数学难题“庞加莱猜想”为主题,从柯斯堡七桥问题入手,详细讲解了拓扑学、非欧几何、流形、微分方程、高斯绝妙定理和傅里叶展开式等数学知识,还原了庞加莱猜想的探索历程,带领读者一同追寻“宇宙的形状”。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。请翻开本书,一同加入主人公们的探索之旅吧。
|
關於作者: |
《数学女孩》
结城浩(作者)
日本技术作家和程序员。二十年来笔耕不辍,在编程语言、设计模式、数学、密码技术等领域,编写著作三十余本。代表作有《数学女孩》系列、《程序员的数学》等。
作者主页:http://www.hyuki.com/
|
內容試閱:
|
《数学女孩》
致读者 1
序言 1
第 1章 数列和数学模型 1
1.1 樱花树下 1
1.2 自己家 5
1.3 数列智力题没有正确答案 8
第 2章 一封名叫数学公式的情书 13
2.1 在校门口 13
2.2 心算智力题 14
2.3 信 15
2.4 放学后 16
2.5 阶梯教室 17
2.5.1 质数的定义 19
2.5.2 值的定义 23
2.6 回家路上 25
2.7 自己家 27
2.8 米尔嘉的解答 31
2.9 图书室 33
2.9.1 方程式和恒等式 33
2.9.2 积的形式与和的形式 37
2.10 在数学公式另一头的人到底是谁 41
第3章 ω的华尔兹 43
3.1 图书室 43
3.2 振动和旋转 46
3.3 ω 53
第4章 斐波那契数列和生成函数 61
4.1 图书室 61
4.1.1 找规律 62
4.1.2 等比数列的和 64
4.1.3 向无穷级数进军 64
4.1.4 向生成函数进军 66
4.2 抓住斐波那契数列的要害 68
4.2.1 斐波那契数列 68
4.2.2 斐波那契数列的生成函数 70
4.2.3 封闭表达式 71
4.2.4 用无穷级数来表示 73
4.2.5 解决 75
4.3 回顾 79
第5章 基本不等式 81
5.1 在“神乐” 81
5.2 满是疑问 83
5.3 不等式 85
5.4 再进一步看看 94
5.5 关于学习 97
第6章 在米尔嘉旁边 103
6.1 微分 103
6.2 差分 107
6.3 微分和差分 109
6.3.1 一次函数x 110
6.3.2 二次函数x2 111
6.3.3 三次函数x3 113
6.3.4 指数函数e x 115
6.4 在两个世界中往返的旅行 117
第7章 卷积 121
7.1 图书室 121
7.1.1 米尔嘉 121
7.1.2 泰朵拉 125
7.1.3 推导公式 125
7.2 在回家路上谈一般化 129
7.3 在咖啡店谈二项式定理 130
7.4 在自己家里解生成函数 140
7.5 图书室 146
7.5.1 米尔嘉的解 146
7.5.2 研究生成函数 152
7.5.3 围巾 155
7.5.4 **后的要塞 156
7.5.5 攻陷 159
7.5.6 半径是0 的圆 163
第8章 调和数 167
8.1 寻宝 167
8.1.1 泰朵拉 167
8.1.2 米尔嘉 169
8.2 图书室里的对话 170
8.2.1 部分和与无穷级数 170
8.2.2 从理所当然的地方开始 173
8.2.3 命题 175
8.2.4 对于所有的…… 178
8.2.5 存在…… 180
8.3 螺旋式楼梯的音乐教室 184
8.4 令人扫兴的 函数 186
8.5 对无穷大的过高评价 187
8.6 在教室中研究调和函数 194
8.7 两个世界、四种运算 197
8.8 已知的钥匙、未知的门 203
8.9 如果世界上只有两个质数 205
8.9.1 卷积 206
8.9.2 收敛的等比数列 207
8.9.3 质因数分解的定理 208
8.9.4 质数无限性的证明 209
8.10 天象仪 213
第9章 泰勒展开和巴塞尔问题 217
9.1 图书室 217
9.1.1 两张卡片 217
9.1.2 无限次多项式 219
9.2 自学 222
9.3 在那家叫“豆子”的咖啡店 224
9.3.1 微分的规则 224
9.3.2 更进一步微分 227
9.3.3 sin x 的泰勒展开 230
9.3.4 极限函数的图像 233
9.4 自己家 237
9.5 代数学基本定理 239
9.6 图书室 245
9.6.1 泰朵拉的尝试 245
9.6.2 要到达哪里 248
9.6.3 向无限挑战 255
第 10章 分拆数 259
10.1 图书室 259
10.1.1 分拆数 259
10.1.2 举例 261
10.2 回家路上 267
10.2.1 斐波那契手势 267
10.2.2 分组 269
10.3 “豆子”咖啡店 271
10.4 自己家 273
10.5 音乐教室 278
10.5.1 我的发言(分拆数的生成函数) 279
10.5.2 米尔嘉的发言(分拆数的上限) 287
10.5.3 泰朵拉的发言 292
10.6 教室 296
10.7 寻找更好的上限之旅 298
10.7.1 以生成函数为出发点 299
10.7.2 “第 一个转角”积变为和 300
10.7.3 “东边的森林”泰勒展开 301
10.7.4 “西边的山丘”调和数 307
10.7.5 旅行结束 308
10.7.6 泰朵拉的回顾 311
10.8 明天见 312
尾声 315
结语 319
参考文献和导读 321
.......
|
|