新書推薦:
《
大宋悬疑录:貔貅刑
》
售價:HK$
74.8
《
不被大风吹倒
》
售價:HK$
65.9
《
人生解忧:佛学入门四十讲
》
售價:HK$
107.8
《
东野圭吾:分身(东野圭吾无法再现的双女主之作 奇绝瑰丽、残忍又温情)
》
售價:HK$
64.9
《
浪潮将至
》
售價:HK$
86.9
《
在虚无时代:与马克斯·韦伯共同思考
》
售價:HK$
57.2
《
斯大林格勒:为了正义的事业(格罗斯曼“战争二部曲”的第一部,《生活与命运》前传)
》
售價:HK$
184.8
《
日内交易与波段交易的资金风险管理
》
售價:HK$
85.8
|
編輯推薦: |
会化媒体已经融入并改变了人们的日常学习、工作和生活方式,成为信息产生、获取、传播的重要载体。基于海量的社会化媒体数据,挖掘客观信息和主观信息,揭示人类社会行为模式的实质,进而全面剖析并理解人类个体及群体,是典型的多学科交叉研究课题,极具挑战性。社会化媒体在突发事件、危机事件等舆论传播中的作用日益凸显,其中情感挖掘和信息传播是社会化媒体处理的重要任务,对网络舆情的预警、分析、监测和管理等具有重要意义。
|
內容簡介: |
社会化媒体情感挖掘与信息传播是人工智能、数据挖掘、自然语言处理、传播学、情报学等多学科交叉研究领域之一,对网络舆情的预警、分析、监测和管理等具有重要意义。本书系统地介绍了社会化媒体情感挖掘与信息传播的主要思想、理论及方法,特别是社会化媒体语料的获取及预处理、中文新词发现、情感倾向性分析、多级情感分类、社会化媒体信息网络等。除绪论外,每章介绍一个主题,从实际需求或问题出发,由浅入深,阐明思想,理论结合实践,便于读者掌握社会化媒体情感挖掘与信息传播理论与方法的实质,学以致用。
本书可作为社会化媒体处理、情感分析、信息传播等专业的科研人员、管理人员的参考书,也可作为高等院校相关课程的教学用书。
|
關於作者: |
李慧,女,首都师范大学副教授,硕士生导师,主要研究方向为人工智能、自然语言处理、数据挖掘等。2005年7月于中国科学院自动化研究所获得工学博士学位,2005.11-2008.10年在中国科学院声学研究所博士后流动站做博士后研究工作。以独立作者在国内外学术期刊和国际主流学术会议上发表论文20余篇,主编/参编专著、教材6本,申请发明专利1项,获得软件著作权1项;作为课题负责人先后完成国家自然科学基金面上项目1项、国家社会科学基金项目2项、中国博士后科学基金1项、北京市人才培养资助项目1项、北京市属高等学校人才强教深化计划项目1项、北京市教育委员会科技计划面上项目1项,作为学术骨干参加了多项国家自然科学基金项目、科技部973项目、863项目,获得“2006年度中国科学院王宽诚博士后工作奖励基金”。
|
目錄:
|
第1章绪论1
1.1社会化媒体的客观信息挖掘1
1.1.1社会网络分析1
1.1.2社会化媒体信息传播2
1.2社会化媒体的主观信息挖掘3
1.2.1社会化媒体情感挖掘4
1.2.2情感分析评测会议7
1.2.3语料库资源8
1.3社会化媒体的应用研究9
第2章社会化媒体语料的获取及预处理12
2.1语料的自动获取13
2.1.1基于网络爬虫的半结构化语料自动获取13
2.1.2基于Web API的半结构化语料自动获取方法20
2.1.3基于模拟浏览器的语料自动获取方法22
2.2语料预处理24
2.3情感词典25
2.3.1基础词典26
2.3.2修饰词典28
2.3.3情感词典的自动构建29
2.4中文分词34
2.4.1中文分词方法35
2.4.2中文分词工具39
2.4.3中文分词研究的基本问题40
2.5句法分析42
2.5.1句法分析语法体系43
2.5.2句法分析方法46
2.5.3中文句法分析工具48
第3章中文新词发现50
3.1中文新词51
3.1.1新词的定义与特点51
3.1.2新词的构词特性51
3.2中文新词发现技术52
3.2.1新词发现的难点53
3.2.2候选新词提取53
3.2.3垃圾字串过滤58
3.2.4评价指标60
3.3基于迭代的新词发现算法61
3.3.1重复模式抽取61
3.3.2重复模式统计特征计算62
3.3.3基于迭代的新词发现的实例64
3.4基于N-Gram的新词发现算法68
3.4.1候选词抽取68
3.4.2算法思路69
3.4.3基于N-Gram的新词发现的实例70
第4章词语级情感倾向性分析78
4.1候选情感词提取78
4.1.1基准种子词的选取78
4.1.2词语相似度计算79
4.1.3候选词的抽取及过滤81
4.2词语情感强度计算82
4.2.1基于词典的词语情感强度计算82
4.2.2基于统计的词语情感强度计算82
4.3评价指标85
4.4融合HowNet和PMI的情感倾向性计算87
4.4.1算法思想87
4.4.2融合HowNet和PMI的词语情感倾向性分析的实例88
第5章句子/篇章级情感倾向性分析92
5.1情感倾向性分析算法92
5.1.1基于情感词典和规则的情感倾向性分析92
5.1.2基于机器学习的情感倾向性分析93
5.2基于词典和规则的情感倾向性分析100
5.2.1基于基础情感词典的情感倾向性分析100
5.2.2基于规则和多部情感词典的情感倾向性分析101
5.3基于句法和规则集的情感倾向性分析104
5.3.1句型和句间关系规则105
5.3.2程度修饰和否定修饰规则111
5.3.3文本情感值计算117
5.4句子级/篇章级情感倾向性分析的实例118
5.4.1实验设置118
5.4.2实验结果分析118
第6章社会化媒体文本的多级情感分析126
6.1基于情感词典和规则的多级情感分析126
6.2基于机器学习的多级情感分析128
6.2.1特征选择128
6.2.2情感分类模型129
6.3融合类序列规则和机器学习的多级情感分析131
6.3.1关联规则132
6.3.2社会化媒体语料中挖掘类序列规则144
6.3.3社会化媒体语料的情感分类145
6.4社会化媒体文本多级情感分析的实例147
6.4.1实验设置147
6.4.2实验结果分析148
第7章社会化媒体信息网络160
7.1复杂网络160
7.1.1复杂网络的拓扑参数161
7.1.2复杂网络的拓扑特性165
7.2情感词共现网络168
7.2.1情感词共现网络的构建168
7.2.2情感词共现网络的拓扑结构170
7.3媒体信息传播网络177
7.3.1媒体信息传播网络的构建177
7.3.2媒体信息传播网络的拓扑结构178
7.3.3媒体信息传播网络的用户互动行为181
7.4基于拓扑势的关键用户识别188
7.4.1节点重要度评估189
7.4.2关键用户识别194
7.4.3用户角色划分201
|
內容試閱:
|
社会化媒体已经融入人们的日常学习、工作和生活,成为信息产生、获取、传播的重要载体。基于海量的社会化媒体数据,挖掘客观信息和主观信息,揭示人类社会行为模式的实质,进而全面剖析并理解人类个体及群体,是典型的多学科交叉研究课题,极具挑战性。社会化媒体在突发事件、危机事件等舆论传播中的作用日益凸显,其中情感挖掘和信息传播是社会化媒体处理的重要任务,对网络舆情的预警、分析、监测和管理等具有重要意义。
本人一直从事机器学习、深度学习、复杂网络及利用其对文本数据进行智能处理的研究,在总结多年科研工作成果的基础上编写了本书。本书详细介绍了社会化媒体情感挖掘和信息传播,力求系统、详细地阐述社会化媒体情感挖掘和信息传播的基本理论及方法。在内容选取上,侧重介绍重要、常用的方法;在叙述方式上,除了章外,每一章讲述一个主题,包括社会化媒体语料的获取及预处理、中文新词发现、情感倾向性分析、多级情感分类、社会化媒体信息网络等,各章内容相对独立、完整;并试图采用统一框架表述相关理论及方法,使全书整体不失系统性。读者既可以通读全书,也可以选择某一章节细读。对每一种方法的讲述力求深入浅出,介绍基本概念及必要的数学公式,给出相应的实例,使初学者易于掌握方法的基本思想,能有效、准确地使用方法。对相关的深层理论,则仅予以简述,避免深奥的数学理论及公式推导,降低读者的阅读难度。
在本书编写过程中,王慧慧、杨青泉、张琪、周雨萌、李缜、高一轩给予了许多帮助,在此向他们致以真诚的谢意。本书初稿完成后,王宗锋、李雪霏分别审阅了全部或部分章节,提出了许多宝贵意见,对本书质量的提升有很大帮助,向他们表示衷心感谢。本书的编写也得到了我的家人的大力支持,在此特向我的家人表示衷心感谢!
本书可作为社会化媒体处理、情感分析、信息传播等专业的科研人员、管理人员的参考用书,也可作为高等院校相关专业教学用书。
由于编写时间仓促,加之本人水平有限,书中难免有不妥之处,敬请专家和读者予以批评指正。
李慧
2021年6月30日
|
|