登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』PyTorch深度学习实战

書城自編碼: 3519631
分類:簡體書→大陸圖書→計算機/網絡人工智能
作者: [美]谢林·托马斯[Sherin,Thomas]苏丹舒·帕西
國際書號(ISBN): 9787111657361
出版社: 机械工业出版社
出版日期: 2020-06-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 104.3

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
财富方程式
《 财富方程式 》

售價:HK$ 77.3
知识社会史(下卷):从《百科全书》到“在线百科”
《 知识社会史(下卷):从《百科全书》到“在线百科” 》

售價:HK$ 99.7
我读巴芒:永恒的价值
《 我读巴芒:永恒的价值 》

售價:HK$ 132.2
你漏财了:9种逆向思维算清人生这本账
《 你漏财了:9种逆向思维算清人生这本账 》

售價:HK$ 55.8
我们终将老去:认识生命的第二阶段(比利时的“理查德·道金斯”,一位行为生物学家的老年有用论
《 我们终将老去:认识生命的第二阶段(比利时的“理查德·道金斯”,一位行为生物学家的老年有用论 》

售價:HK$ 91.8
谁是窃书之人 日本文坛新锐作家深绿野分著 无限流×悬疑×幻想小说
《 谁是窃书之人 日本文坛新锐作家深绿野分著 无限流×悬疑×幻想小说 》

售價:HK$ 55.8
一个经济杀手的自白 第3版
《 一个经济杀手的自白 第3版 》

售價:HK$ 110.9
8秒按压告别疼痛
《 8秒按压告别疼痛 》

售價:HK$ 87.4

 

編輯推薦:
读者对象:本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的开发人员。
本书是一本深度学习实践指南,聚焦于PyTorch深度学习各场景的动手实现,不涉及模型层面的原理剖析。书中通过大量示例及代码,详细展示如何使用PyTorch构建深度学习模型原型、构建深度学习工作流和将原型用于生产。全书共7章。第1章介绍使用PyTorch进行深度学习的方法和PyTorch的基本API;第2章演示如何构建一个简单神经网络;第3章深入探讨深度学习工作流和PyTorch生态系统;第4章介绍基于PyTorch构建的CNN;第5章介绍RNN并探讨序列数据处理;第6章详细介绍生成对抗网络(GAN);第7章介绍强化学习;第8章介绍将PyTorch应用于生产的三种不同方法。
內容簡介:
PyTorch是一个崭新的、轻量级的、以Python为优先开发语言的深度学习框架。PyTorch由Facebook开发,以其灵活性和高效性迅速成为深度学习专家的*。 PyTorch可以帮助你快速完成深度学习模型的开发。
本书介绍了如何基于PyTorch框架实现主要的深度学习模型。本书从简单的神经网络开始,内容涵盖了CNN、RNN、GAN和强化学习。你也可以基于PyTorch框架构建深度学习工作流,把基于Python构建的模型迁移到更高效的TorchScript,并使用复杂的工具将其部署到生产环境中。
如果你想成为深度学习专家,那么本书很适合你。
通过本书,你将学习使用PyTorch来构建:
简单神经网络基于PyTorch高阶函数、优化器及更多方法来构建神经网络。
卷积神经网络构建高级计算机视觉系统。
循环神经网络处理自然语言和音频等序列数据。PyTorch是一个崭新的、轻量级的、以Python为优先开发语言的深度学习框架。PyTorch由Facebook开发,以其灵活性和高效性迅速成为深度学习专家的*。 PyTorch可以帮助你快速完成深度学习模型的开发。
本书介绍了如何基于PyTorch框架实现主要的深度学习模型。本书从简单的神经网络开始,内容涵盖了CNN、RNN、GAN和强化学习。你也可以基于PyTorch框架构建深度学习工作流,把基于Python构建的模型迁移到更高效的TorchScript,并使用复杂的工具将其部署到生产环境中。
如果你想成为深度学习专家,那么本书很适合你。
通过本书,你将学习使用PyTorch来构建:
简单神经网络基于PyTorch高阶函数、优化器及更多方法来构建神经网络。
卷积神经网络构建高级计算机视觉系统。
循环神经网络处理自然语言和音频等序列数据。
生成对抗网络创建包含简单GAN和CycleGAN模型的新内容。
强化学习开发能解决诸如自动驾驶和游戏博弈等复杂问题的系统。
深度学习工作流基于PyTorch及其实用程序包,通过深度学习工作流将想法有效地用于生产。
生产就绪模型将模型打包以用于高性能生产环境。
關於作者:
谢林托马斯(Sherin Thomas) 的职业生涯始于信息安全专家,后来他将工作重心转移到基于深度学习的安全系统。他曾帮助全球多家公司建立AI流程,曾就职于初创公司CoWrks。他目前正在从事多个开源项目,包括PyTorch、RedisAI等,并领导TuringNetwork.ai的开发。他还专注于为奥罗比克斯(Orobix)分拆公司[tensor]werk建设深度学习基础设施。

苏丹舒帕西(Sudhanshu Passi) 是CoWrks的技术专家。在CoWrks,他一直是机器学习的一切相关事宜的驱动者。在简化复杂概念方面的专业知识使他的著作成为初学者和专家的理想读物。在业余时间,他还会在当地的游泳池内计算水下梯度下降。

译者简介
马恩驰 京东算法总监,现任京东算法智能应用部负责人,负责智能营销算法在业务中的应用。曾就职于阿里巴巴达摩院-人工智能实验室,负责语音搜索架构升级和搜索算法优化工作。在搜索推荐领域有10年的算法经验,主要研究方向为自然语言处理、知识图谱、智慧营销等。主导编写和翻译了《TensorFlow自然语言处理》《PyTorch深度学习实战》《应用预测建模》《智慧运营》等书籍。
目錄
译者序
前言
作者简介
审校者简介
第1章 深度学习回顾和PyTorch简介1
1.1 PyTorch的历史2
1.2 PyTorch是什么3
1.2.1 安装PyTorch4
1.2.2 PyTorch流行的原因5
1.3 使用计算图7
1.3.1 使用静态图8
1.3.2 使用动态图11
1.4 探索深度学习13
1.5 开始编写代码22
1.5.1 学习基本操作22
1.5.2 PyTorch的内部逻辑28
1.6 总结31
参考资料32
第2章 一个简单的神经网络33
2.1 问题概述33
2.2 数据集34
2.3 新手模型38
2.4 PyTorch方式49
2.4.1 高阶API50
2.4.2 functional模块55
2.4.3 损失函数57
2.4.4 优化器57
2.5 总结59
参考资料59
第3章 深度学习工作流60
3.1 构思和规划61
3.2 设计和实验62
3.2.1 数据集和DataLoader类62
3.2.2 实用程序包65
3.3 模型实现75
3.4 训练和验证79
3.5 总结86
参考资料 86
第4章 计算机视觉87
4.1 CNN简介87
4.2 将PyTorch应用于计算机视觉90
4.2.1 简单CNN90
4.2.2 语义分割99
4.3 总结112
参考资料112
第5章 序列数据处理114
5.1 循环神经网络简介114
5.2 问题概述116
5.3 实现方法116
5.3.1 简单RNN117
5.3.2 高级RNN130
5.3.3 递归神经网络137
5.4 总结141
参考资料142
第6章 生成网络143
6.1 方法定义144
6.2 自回归模型145
6.2.1 PixelCNN147
6.2.2 WaveNet153
6.3 GAN161
6.3.1 简单GAN161
6.3.2 CycleGAN168
6.4 总结173
参考资料173
第7章 强化学习175
7.1 问题定义177
7.2 回合制任务与连续任务178
7.3 累积折扣奖励179
7.4 马尔可夫决策过程180
7.5 解决方法182
7.5.1 策略和价值函数182
7.5.2 贝尔曼方程183
7.5.3 深度Q学习184
7.5.4 经验回放186
7.5.5 Gym186
7.6 总结194
参考资料194
第8章 将PyTorch应用到生产195
8.1 使用Flask提供服务196
8.2 ONNX202
8.3 使用TorchScript提高效率215
8.4 探索RedisAI218
8.5 总结222
参考资料223
內容試閱
本书帮助读者快速深入深度学习。在过去的几年里,我们看到深度学习成了新的动力。它从学术界一路进军到工业领域,帮助解决了数千个难题。没有它,人类永远无法想象如何解决这些难题。深度学习的应用主要是由一组框架推动的,这些框架可靠地将复杂的算法转化为高效的内置方法。本书展示了PyTorch 在构建深度学习模型原型、深度学习工作流以及将原型模型用于生产方面的优势。总体而言,本书专注于 PyTorch 的实际实现,而不是解释它背后的数学原理。但本书也会给出一些链接,这些链接会补充一些相关概念。
本书适合谁
我们没有尽可能多地解释算法,而是专注于PyTorch中的算法实现,并着眼于使用这些算法的实际应用程序的实现。本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的开发人员。
本书包含哪些内容
第1章介绍使用PyTorch进行深度学习的方法以及 PyTorch 的基本 API。本章介绍PyTorch 的历史,以及为什么 PyTorch 应该成为深度学习发展的首选框架,还介绍后续章节中将讨论的不同深度学习方法。
第2章将帮助你构建第一个简单神经网络,并演示如何将神经网络、优化器和参数更新连接在一起以构建简单深度学习模型。本章还介绍PyTorch如何进行反向传播,这是所有先进的深度学习算法背后的关键。
第3章深入探讨深度学习工作流的实现以及帮助构建工作流的 PyTorch 生态系统。如果你计划为项目建立深度学习团队或流程,那么这可能是最关键的一章。在本章中,我们将介绍深度学习流程的不同阶段,并介绍PyTorch 社群如何通过制定适当的工具来在工作流的每个阶段迭代地进行优化。
第4章讨论迄今为止深度学习最成功的结果计算机视觉成功背后的关键思想,并将介绍使用最广泛的视觉算法卷积神经网络(CNN)。我们将逐步实现 CNN 以理解其工作原理,然后使用 PyTorch 的 nn包中预定义的CNN。本章将帮助你实现一个简单的CNN和一种先进的基于CNN的视觉算法语义分割。
第5章着眼于循环神经网络,这是目前最成功的序列数据处理算法。本章将首先介绍主要的 RNN 组件,如长短期记忆(LSTM)网络和门控循环单元(GRU)。然后,我们将在探索递归神经网络之前对RNN 实现中的算法做一些更改,如双向 RNN,并增加层数。为了理解递归网络,我们将使用斯坦福 NLP 团队的著名示例,即堆栈增强解析器解释器神经网络 (SPINN),并在 PyTorch 中实现该示例。
第6章简要介绍生成网络的历史,然后讨论不同种类的生成网络,包括自动回归模型和 GAN。我们将在6.2节讨论 PixelCNN 和 WaveNet 的实现细节,然后详细讨论 GAN。
第7章介绍强化学习的概念但它并不是深度学习的一个子类别。我们将首先了解如何定义问题,然后将探讨累积奖励的概念。我们将探讨马尔可夫决策过程和贝尔曼方程,然后介绍深度Q学习。我们还将介绍Gym,它是 OpenAI 开发的用于开发和试验强化学习算法的工具包。
第8章着眼于人们(甚至深度学习专家)在将深度学习模型部署到生产时所遇到的难题。我们将探讨不同的生产部署选项,包括围绕PyTorch 使用 Flask封装器以及使用 RedisAI。RedisAI是一个高度优化的运行器,用于在多群集环境中部署模型,每秒可以处理数百万个请求。
如何使用本书
本书中的代码以 Python 编写,托管在 GitHub 上。尽管有压缩的代码存储库可供下载,但在线GitHub 存储库将收到 bug 修复和更新。因此,读者既有必要对GitHub 有基本的了解,也有必要具备Python的基础知识。
虽然不是必需的,但使用 CUDA 驱动程序将有助于加快训练过程(如果不使用任何预先训练的模型)。
本书中的代码示例虽然是在 Ubuntu 18.10 计算机上开发的,但适用于所有流行的平台。但是,如果你遇到任何困难,请随时在 GitHub 中提出问题。
本书中的一些示例要求使用其他服务或包,如 redis-server 和 Flask 框架。所有这些外部依赖项和方法指南都记录在其出现的章节中。
下载示例代码及彩色图像
本书的示例代码及所有截图和图表,可以从http:www.packtpub.com通过个人账号下载,也可以访问华章图书官网http:www.hzbook.com,通过注册并登录个人账号下载。
下载文件后,请确保使用最新版本的解压文件:
WinRAR 7-Zip 用于Windows
Zipeg iZip UnRarX 用于 macOS
7-Zip PeaZip 用于 Linux
本书的代码包也托管在GitHub中,网址为https:github.comhhsecondHands OnDeepLearningWithPytorch。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.