登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』数学之书+数学笔记(套装版)

書城自編碼: 3341946
分類:簡體書→大陸圖書→科普讀物科學世界
作者: [美]克利福德·皮寇弗,杨大地 著,陈以礼 译
國際書號(ISBN): 9787568900744
出版社: 重庆大学出版社
出版日期: 2019-04-01


書度/開本: 16开 釘裝: 平装

售價:HK$ 183.6

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
潜能觉醒
《 潜能觉醒 》

售價:HK$ 86.9
初平:汉末群雄混战(190—195)
《 初平:汉末群雄混战(190—195) 》

售價:HK$ 53.9
建安:官渡大决战(196—200)
《 建安:官渡大决战(196—200) 》

售價:HK$ 53.9
权力的图像——近代的中国海图与交流
《 权力的图像——近代的中国海图与交流 》

售價:HK$ 184.8
中亚民族史
《 中亚民族史 》

售價:HK$ 184.8
人工智能与智能制造:概念与方法    [美]马苏德·索鲁什    [美]理查德·D.布拉茨
《 人工智能与智能制造:概念与方法 [美]马苏德·索鲁什 [美]理查德·D.布拉茨 》

售價:HK$ 140.8
中平:东汉王朝大崩溃(184—189)
《 中平:东汉王朝大崩溃(184—189) 》

售價:HK$ 53.9
基于鲲鹏的分布式图分析算法实战
《 基于鲲鹏的分布式图分析算法实战 》

售價:HK$ 108.9

 

編輯推薦:
《数学之书》搭配精美笔记本《数学笔记》的套装特别版本,更值得爱好数学的你!
数学之书:
里程碑书系全球版权销售超过二十个国家和地区,销量超百万册!
数学是一个美妙而疯狂的学科!《数学之书》一部图文并茂的编年体数学百科,一卷博古通今的数学历史,故事性趣味性知识性完美融合!一本书让您领略科学之王数学的迷人魅力!
对我而言,不论是心智的特质、思想的极限,或者是人类相对于浩瀚宇宙所处的环境,都可以用数学来发掘其中永无止境的惊奇奥秘。克利福德皮寇弗

数学笔记:
音乐能激发或抚慰人的感情,绘画使人赏心悦目,诗歌能动人心弦,哲学使人聪慧,科学可以改善生活,而数学能做到这一切。而《数学笔记》能陪伴你、帮助你、启发你,在与你共同探索未来的路上,它愿意耐心地倾听你与数学的故事。
內容簡介:
数学之书:人类什么时候在绳子上打下*个结?
为什么*位女数学家会死于非命?
有可能把一个球体的内部翻转出来吗?
这些只是这本插图精美的书中涉及到众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史*重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的*古怪的问题,从公元前一亿五千万年到*的前沿突破。
数学已经渗入每一个科学领域,并且在生物学、物理、化学、经济、社会学和工程等方面扮演着无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构,可以帮助我们探索比原子还小的量子世界,也可以帮助我们描绘遥不可及的银河系。
在现实世界运用的著名计算公式和数学定理背后隐藏着数学家们一生的传奇故事。跟随皮寇弗踏上这趟数学之旅,探索数学历*重要的250个里程碑事件,从蚂蚁计数到*把算盘,从发现电脑创造的碎形到寻找新的维度空间。在这趟旅程中我们还会遇到毕达哥拉斯和欧几里得等伟大的思想家,以及近代数学巨擘马丁加德纳、泰格马克等等。数学之书:
人类什么时候在绳子上打下*个结?
为什么*位女数学家会死于非命?
有可能把一个球体的内部翻转出来吗?
这些只是这本插图精美的书中涉及到众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史*重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的*古怪的问题,从公元前一亿五千万年到*的前沿突破。
数学已经渗入每一个科学领域,并且在生物学、物理、化学、经济、社会学和工程等方面扮演着无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构,可以帮助我们探索比原子还小的量子世界,也可以帮助我们描绘遥不可及的银河系。
在现实世界运用的著名计算公式和数学定理背后隐藏着数学家们一生的传奇故事。跟随皮寇弗踏上这趟数学之旅,探索数学历*重要的250个里程碑事件,从蚂蚁计数到*把算盘,从发现电脑创造的碎形到寻找新的维度空间。在这趟旅程中我们还会遇到毕达哥拉斯和欧几里得等伟大的思想家,以及近代数学巨擘马丁加德纳、泰格马克等等。
關於作者:
数学之书:
科普鬼才作者克利福德皮寇弗是一位多产作家,涉猎主题从科学、数学到宗教、艺术及历史,出版超过四十本书,并被翻译成数十种语言,畅销全球。皮寇弗在耶鲁大学取得分子生物理化博士学位,在美国拥有四十多项专利,并担任数本科学期刊的编辑委员。他的研究屡屡见于CNN、《连线》杂志、《纽约时报》等诸多重要媒体。
目錄
数学之书:
目 录
简介 数学之美与效用 VII
本书的架构与目的 XI
导读 XV
001 约公元前1.5亿年/蚂蚁的里程表
002 约公元前3000万年/灵长类算数
003 约公元前100万年/为质数而生的蝉
004 约公元前10万年/结绳记事
005 约公元前1.8万年/伊尚戈骨骸
006 约公元前 3000 年/秘鲁的奇普
007 约公元前 3000 年/骰子
008 约公元前 2200 年/魔方阵
009 约公元前 1800 年/普林顿 322 号泥板
010 约公元前 1650 年/莱因德纸草书
011 约公元前 1300 年/圈叉游戏
012 约公元前 600 年/勾股定理与三角形
013 约公元前 548 年/围棋
014 约公元前 530 年/毕达哥拉斯创立数学
兄弟会
015 约公元前 445 年/季诺悖论
016 约公元前 440 年/月形求积
017 约公元前 350 年/柏拉图正多面体
018 约公元前 350 年/亚里士多德的
《工具论》
019 约公元前 320 年/亚里士多德轮子悖论
020 约公元前 300 年/欧几里得《几何原本》
021 约公元前 250 年/阿基米德:沙粒、
群牛问题和胃痛游戏
022 约公元前 250 年/圆周率
023 约公元前 240 年/埃拉托斯特尼筛检法
024 约公元前 240 年/阿基米德不完全正
多面体
025 约公元前 225 年/阿基米德螺线
026 约公元前 180 年/蔓叶线
027 约150 年/托勒密的《天文学大成》
028 250 年/戴奥芬特斯的《数论》
029 约 340 年/帕普斯六边形定理
030 约 350 年/巴克沙里手稿
031 415 年/希帕提娅之死
032 约 650 年/数字 0
033 约 800 年/阿尔琴的《砥砺年轻人
的挑战》
034 830 年/阿尔花拉子密的《代数》
035 834 年/博罗密环
036 850 年/《摩诃吠罗的算术书》
037 约850 年/塔比亲和数公式
038 约953 年/印度数学璀璨的章节
039 1070 年/奥玛海亚姆的
《代数问题的论著》
040 约1150 年/阿尔萨马瓦尔的
《耀眼的代数》
041 约1200 年/算盘
042 1202 年/斐波那契的《计算书》
043 1256 年/西洋棋盘上的小麦
044 约1350 年/发散的调和级数
045 约1427 年/余弦定律
046 1478 年/《特雷维索算术》
047 约1500 年/圆周率 的级数公式之
发现
048 1509 年/黄金比
049 1518 年/《转译六书》
050 1537 年/倾角螺线
051 1545 年/卡丹诺的《大术》
052 1556 年/《简明摘要》
053 1569 年/麦卡托投影法
054 1572 年/虚数
055 1611 年/克卜勒猜想
056 1614 年/对数
057 1621 年/计算尺
058 1636 年/费马螺线
059 1637 年/费马最后定理
060 1637 年/笛卡儿的《几何学》
061 1637 年/心脏线
062 1638 年/对数螺线
063 1639 年/射影几何
064 1641 年/托里切利的小号
065 1654 年/帕斯卡尔三角形
066 1657 年/奈尔类立方拋物线的长度
067 1659 年/维维亚尼定理
068 约1665 年/发现微积分
069 1669 年/牛顿法
070 1673 年/等时曲线问题
071 1674 年/星形线
072 1696年/洛必达的《阐明曲线的无穷
小分析》
073 1702 年/绕地球一圈的彩带
074 1713 年/大数法则
075 1727 年/欧拉数 e
076 1730 年/斯特灵公式
077 1733 年/常态分布曲线
078 1735 年/欧拉马歇罗尼常数
079 1736 年/柯尼斯堡七桥问题
080 1738 年/圣彼得堡悖论
081 1742 年/哥德巴赫猜想
082 1748 年/安聂希的《解析的研究》
083 1751 年/欧拉多面体公式
084 1751 年/欧拉多边形分割问题
085 1759 年/骑士的旅程
086 1761 年/贝氏定理
087 1769 年/富兰克林的魔术方阵
088 1774 年/最小曲面
089 1777 年/布丰投针问题
090 1779 年/三十六位军官问题
091 约1789 年/算额几何
092 1795 年/最小平方法
093 1796 年/正十七边形作图
094 1797 年/代数基本定理
095 1801 年/高斯的《算术研究》
096 1801 年/三臂量角器
097 1807 年/傅立叶级数
098 1812 年/拉普拉斯的《概率分析论》
099 1816 年/鲁珀特王子的谜题
100 1817 年/贝索函数
101 1822 年/巴贝奇的计算器
102 1823 年/柯西的《无穷小分析教程概论》
103 1827 年/重心微积分
104 1829 年/非欧几里得几何
105 1831 年/莫比乌斯函数
106 1832 年/群论
107 1834 年/鸽笼原理
108 1843 年/四元数
109 1844 年/超越数
110 1844 年/卡塔兰猜想
111 1850 年/西尔维斯特的矩阵
112 1852 年/四色定理
113 1854 年/布尔代数
114 1857 年/环游世界游戏
115 1857 年/谐波图
116 1858 年/莫比乌斯带
117 1858 年/霍迪奇定理
118 1859 年/黎曼假设
119 1868 年/贝尔特拉米的拟球面
120 1872 年/魏尔斯特拉斯函数
121 1872 年/格罗斯的《九连环理论》
122 1874 年/柯瓦列夫斯卡娅的博士学位
123 1874 年/十五格数字推盘游戏
124 1874 年/康托尔的超限数
125 1875 年/勒洛三角形
126 1876 年/谐波分析仪
127 1879 年/瑞提第一号收款机
128 1880 年/文氏图
129 1881 年/本福特定律
130 1882 年/克莱因瓶
131 1883 年/河内塔
132 1884 年/《平面国》
133 1888 年/超立方体
134 1889 年/皮亚诺公理
135 1890 年/皮亚诺曲线
136 1891 年/壁纸图群
137 1893 年/西尔维斯特直线问题
138 1896 年/质数定理的证明
139 1899 年/皮克定理
140 1899 年/莫雷角三分线定理
141 1900 年/希尔伯特的二十三个问题
142 1900 年/卡方
143 1901 年/波以曲面
144 1901 年/理发师悖论
145 1901 年/荣格定理
146 1904 年/庞加莱猜想
147 1904 年/科赫雪花
148 1904 年/策梅洛的选择公理
149 1905 年/若尔当曲线定理
150 1906 年/图厄摩斯数列
151 1909 年/布劳威尔不动点定理
152 1909 年/正规数
153 1909 年/布尔夫人的
《代数的哲学与趣味》
154 19101913 年/《数学原理》
155 1912 年/毛球定理
156 1913 年/无限猴子定理
157 1916 年/毕伯巴赫猜想
158 1916 年/强森定理
159 1918 年/郝斯多夫维度
160 1919 年/布朗常数
161 约1920 年/天文数字Googol
162 1920 年/安多的项链
163 1921 年/诺特的《理想子环》
164 1921 年/超空间迷航记
165 1922 年/巨蛋穹顶
166 1924 年/亚历山大的角球
167 1924 年/巴拿赫塔斯基悖论
168 1925 年/用正方形拼出的矩形
169 1925 年/希尔伯特旅馆悖论
170 1926 年/门格海绵
171 1927 年/微分分析机
172 1928 年/雷姆斯理论
173 1931 年/哥德尔定理
174 1933 年/钱珀努恩数
175 1935 年/布尔巴基:秘密协会
176 1936 年/菲尔兹奖
177 1936 年/图灵机
178 1936 年/渥德堡铺砖法
179 1937 年/考拉兹猜想
180 1938 年/福特圈
181 1938 年/随机数产生器的诞生
182 1939 年/生日悖论
183 约1940 年/外接多边形
184 1942 年/六贯棋
185 1945 年/智猪博弈
186 1946 年/ENIAC
187 1946 年/冯纽曼平方取中随机函数
188 1947 年/格雷码
189 1948 年/信息论
190 1948 年/科塔计算器
191 1949 年/塞萨多面体
192 1950 年/纳什均衡
193 1950 年/海岸线悖论
194 1950 年/囚犯的两难
195 1952 年/细胞自动机
196 1957 年/加德纳的数学游戏专栏
197 1958 年/吉伯瑞斯猜想
198 1958 年/球面翻转
199 1958 年/柏拉图撞球台
200 1959 年/外边界撞球台
201 1960 年/纽康伯悖论
202 1960 年/谢尔宾斯基数
203 1963 年/混沌理论与蝴蝶效应
204 1963 年/乌拉姆螺线
205 1963 年/无法证明的连续统假设
206 约1965 年/超级椭圆蛋
207 1965 年/模糊逻辑
208 1966 年/瞬时疯狂方块游戏
209 1967 年/朗兰兹纲领
210 1967 年/豆芽游戏
211 1968 年/剧变理论
212 1969 年/托卡斯基的暗房
213 1970 年/高德纳与珠玑妙算游戏
214 1971 年/群策群力的艾狄胥
215 1972 年/HP-35:第一台口袋型工程计
算器
216 1973 年/潘洛斯铺砖法
217 1973 年/艺廊定理
218 1974 年/魔方
219 1974 年/柴廷数
220 1974 年/超现实数
221 1974 年/博科绳结
222 1975 年/分形
223 1975 年/费根堡常数
224 1977 年/公钥密码学
225 1977 年/西拉夕多面体
226 1979 年/池田收束
227 1979 年/连续三角螺旋
228 1980 年/曼德博集合
229 1981 年/怪兽群
230 1982 年/球内三角形
231 1984 年/琼斯多项式
232 1985 年/威克斯流形
233 1985 年/安德里卡猜想
234 1985 年/ABC 猜想
235 1986 年/发声数列
236 1988 年/计算机软件包 Mathematica
237 1988 年/莫非定律诅咒下的绳结
238 1989 年/蝶形线
239 1996 年/整数数列在线大全
240 1999 年/永恒难题
241 1999 年/完美的魔术超立方体
242 1999 年/巴兰多悖论
243 1999 年/破解极致多面体
244 2001 年/床单问题
245 2002 年/破解艾瓦里游戏
246 2002 年/NP 完备的俄罗斯方块
247 2005 年/《数字搜查线》
248 2007 年/破解西洋跳棋
249 2007 年/探索特殊 E8李群的旅程
250 2007 年/数理宇宙假说
內容試閱
数学已经渗入每一个需要费尽心思的科学领域,并且在生物学、物理、化学、经济、社会学跟工程等方面取得无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构。数学帮助我们打造超音速飞机跟云霄飞车,模拟地球天然资源流转的方式,进入次原子的量子世界探索,甚至让我们得以想象遥远的银河系。数学可以说是改变了我们看待宇宙的方式。

在本书中,我希望运用少量数学公式提供一点数学品位,而鼓励读者发挥想象力。对大多数读者而言,这本书所谈论的应该不只是能满足好奇心却缺乏实用价值的单元,根据美国教育部实际调查的结果显示,能够顺利完成高中数学课程的学生升上大学后不论选读哪一个专业,都能够展现出比较优秀的学习能力。

数学的实用性让我们可以建造宇宙飞船,探索所处宇宙的几何结构。数字也可能是我们跟有智能的外星生物间所采用的第一种沟通手段
。有些物理学家认为掌握更高空间维度和拓朴学(topology ,探索形状与彼此间相互关系的一门学问),或许有一天当现在这个宇宙处于在极热或极冷的末日之际
,我们就能逃出,在不同的时空环境下安身立命 。

数学史上不乏许多人同步有重大发现的例子 ,就以这本书里面的莫比乌斯带(The Mobius Strip)为例 。德国数学家莫比乌斯(August Mobius)和当时另一位德国数学家利斯廷(Johann Benedict
Listing ) 同时在公元 1858 年各自发现莫比乌斯带 (一个只有单面,神奇的扭曲物体)。这种同步发现的现象就跟英国博学多闻的牛顿 (Isaac Newton )与德国数学家莱布尼兹 (Gottfried Wilhelm Leibniz )各自同时发现微积分的例子相似
。这些例子让我不禁怀疑科学领域为何经常有不同人,在相同时间,独立发现同一件事情的情况?其他例子还包括英国博物学家达尔文(Charles Darwin )和华莱士(Alfred Wallace )都在相同时间各别提出演化论的观点,匈牙利数学家鲍耶
(Jnos Bolyai )和俄罗斯数学家罗巴切夫斯基(Nikolai Lobachevsky )似乎也是在同一时间各别提出双曲几何的想法


最有可能解释同步重大发现的理由,是因为人类在那些时间点对于即将诞生的发现 ,已经累积足够的知识,这些想法自然也就瓜熟蒂落地被提出来;可能两位科学家都受到当代其他研究人员同一篇先导研究论文的影响
。另一种带有神秘色彩的解释,会从较深层的观点说明这种巧合。奥地利生物学家卡梅纳(Paul Kammerer )曾表示:或许我们可以说,尽管打散
、重组的过程在现实世界繁华的表面下与宇宙无垠的千变万化中不断重复发生,但是物以类聚的现象也会同时在这些过程中产生;卡梅纳把现实世界的重大事件比喻成海洋波涛的顶端,彼此间看起来各自孤立,毫无瓜葛,不过根据他充满争议性的理论,我们其实只看到上层的波浪,却没注意到海面下可能存在某种同步机制,诡谲地把世上各种重大事件串在一起,才显现出这种一波又一波的风潮。

易法拉(Georges Ifrah)在 《数目溯源》 (The Universal History of Numbers)一书中谈论马雅数学时,顺便论及了这种同步情况 :

我们因此又再一次地见证到,散居在广大时空环境的下互不认识的人也会有非常类 似甚至是一模一样想法。有些例子的解释;是因为他们接触了另一群不一样的人并受到 对方的影响,真正的有效解释是因为前面提过的深层文化融合:智人(Homo
sapiens)这种生物的智力具有共通性,把世界各个角落统整串连的潜力非常可观。


古代的希腊人深深受到数目字的吸引。在这个不停变动世界的艰困年代,会不会只有数目字才是唯一恒常不变的?对于源自一门古希腊学派、毕达哥拉斯理念的追随者而言,数目字是具体不变、和缓永恒的比所有朋友更值得信赖,却不像阿波罗或宙斯般让人无法亲近。

本书中有很多条目都跟整数有关 ,聪颖的数学家艾狄胥(Paul Erdos)醉心于数论有关于整数课题的研究,他经常能轻易使用整数提出问题,尽管问题的陈述很简单,但是每一题却都是出了名的难解。艾狄胥认为如果有任何数学问题提出后经过一个世纪依然无解的话,那一定是个跟数论有关的问题。

有很多宇宙万物可以用整数表达之,譬如用整数描述菊花花瓣构成的方式、兔子的繁衍、行星的轨道、音乐的合弦,以及周期表元素间的关系。德国代数学家暨数论大师克罗内克(Leopold Kronecker)曾经说过 :只有整数来自于上帝 ,其他都是人造的 。这句话也暗示整数是一切数学的最主要根源 。

自从毕达哥拉斯的年代以来,按照整数比例演奏出的音乐,就相当受欢迎,更重要的是,在人类理解科学的演进过程中,整数也扮演着相关关键的角色,像是法国化学家拉瓦节
(Antoine Lavoisier)就是依照整数比调配组成化合物的元素,显示出原子存在的强烈证据。公元
1925 年,激态原子放射出一定整数比的光谱波长,也是当时发现原子结构的一项证据。几乎按照整数比呈现的原子量,显示原子核是由整数个数的相似核子(质子跟中子)所组成,与整数比的误差则促成同位素(基本元素的变形体,拥有几乎一样的化学特性,只在中子数的个数上有所差异)的发现


纯同位素 (pure isotope )原子量无法完全以整数比呈现的微小差异
,确认了爱因斯坦 (Albert Einstein)著名方程式E=mc2是成立的,也显示出生产原子弹的可能。在原子物理领域随处可见整数的存在 。整数关系是组成数学最基本的一股势力或者引用高斯 (Carl Friedrich Gauss )的说法 :数学是所有科学的女王而数论则是数学中的天后 。

用数学描述宇宙这门学科成长迅速,但是,我们的思考方式跟语言表达能力却还有待好好加强。我们一直发现或创造出新的数学,但是,我们还需要用更先进的思维才能加以理解。譬如最近这几年已经有人针对数学史上几个最著名问题提出证明,可是,他们的论证方式非常冗长又复杂
,就连专家们也都没办法确定这些论证是否正确。数学家哈里斯(Thomas
Hales)将一篇几何学论文投稿到世界顶级数学杂志《数学年刊》 (Annals of Mathematics)后 ,整整花了五年的时间等待专家审查意见专家们最后的结论是找不到这篇论文哪里有错,建议该期刊加以发表,可是必须加上免责声明他们无法肯定这个证明是对的!另一个例子来自数学家德福林(Keith Devlin),他在 《纽约时报》(New York Times)刊出的文章中承认 :数学已经进展到一个相当抽象的程度
,甚至就连专家有时都无法理解最新的研究课题到底在讲什么 。如果就连专家都有这样的困扰,想要把这些信息传递给普罗大众当然更是困难重重,我们只好竭尽所能,尽力而为。虽然数学家们在建构理论、执行运算这些方面很在行,不过他们在融会贯通、解说传达先进观念的能力恐怕还是有所不足。

在此引用物理作为模拟。当海森堡
(Werner Heisenberg)担心一般人可能永远也无法真正理解原子是怎么一回事时,波耳(Niels
Bohr)显得相对乐观。公元
1920 年,波耳在一封回给海森堡的信中提到 :我认为这是有可能的 ,但是要配合我们重新认识理解这个词汇真正意涵的过程
。我们现在使用计算机进行研究的真正原因,是因为我们直观能力有限,透过计算机实验实际上已经让数学家们取得更进一步的发现与洞见,这是在计算机普及以前作梦也想不到的结果。计算机及其绘图功能,让数学家们早在有办法正式完成证明之前,就先看到结果,也开启了一项全新的数学研究领域,就连电子表格这种简单的计算机工具,也能让现代数学家拥有高斯、欧拉
(Leonhard Euler)、牛顿等人渴望的数学功力。随便举个例子 20世纪90年代末由贝利(David Bailey)跟佛格森(Helaman Ferguson)两人设计的计算机程序用一条新公式把圆周率
、log 5和其他两个常数串在一块,如同克拉瑞克 (Erica Klarreich )在 《科学新知》(Science News)上的报导,只要计算机能把公式先找出来,事后完成证明的工作就简单多了, 毕竟在完成数学证明的过程中,简单地知道答案这项工作,通常也是最难以跨越的障碍。

我们有时候会用数学理论预测某些要经过好几年后才能确认的现象,譬如以物理学家马克斯韦尔(James Clerk Maxwell)命名的马克斯韦尔方程式(Maxwell equation)预测了无线电波的存在;爱因斯坦场论方程式
(fields equation )指出重力可以折弯光线及宇宙扩张论。物理学家狄拉克(Paul Dirac)曾说过,今天研究的数学课题可以让我们偷偷瞄见未来的物理理论,事实上,狄拉克的方程式预测了之后才陆陆续续发现的反物质(antimatter)存在。数学家罗巴切夫斯基也说过类似的话:就算再抽象的数学分支
,也总有一天会运用在诠释现实世界的物理现象上。

在这本书里,读者们将会碰上许多被认为掌握宇宙之钥、相当有趣的几何学家。伽利略(Galileo Galilei)曾说过:大自然的鬼斧神工不外乎是数学符号写成的篇章。克卜勒 (Johannes Kepler)曾使用正十二面体之类的柏拉图正多面体,建构太阳系的模型。20世纪60 年代的物理学家维格纳 (Eugene Wigner )对于数学在自然科学中具有超乎常理的效用感到印象深刻;像是E8这种大李群(large Lie Group,参照***页条目 ):探索特殊 E8 李群的旅程 (公元 2007 年 )则可能在某一天协助我们创造一统物理学的终极理论。2007 年,瑞典裔的美国宇宙学家泰格马克(Max Tegmark)发表一篇大受欢迎、谈论数理宇宙假说的科学文章,指出我们看到的物理实体其实都是数学结构;也就是说,我们不只可以用数学描述所处的宇宙 ,甚至可以说宇宙本身就是数学 。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.