登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』模式识别与人工智能(基于MATLAB)

書城自編碼: 3197080
分類:簡體書→大陸圖書→計算機/網絡人工智能
作者: 周润景
國際書號(ISBN): 9787302486350
出版社: 清华大学出版社
出版日期: 2018-05-01
版次: 1

書度/開本: 16开 釘裝: 平装

售價:HK$ 146.9

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
投机苦旅:一位投机客的凤凰涅槃
《 投机苦旅:一位投机客的凤凰涅槃 》

售價:HK$ 88.5
重返马赛渔场:社会规范与私人治理的局限
《 重返马赛渔场:社会规范与私人治理的局限 》

售價:HK$ 69.4
日子慢慢向前,事事慢慢如愿
《 日子慢慢向前,事事慢慢如愿 》

售價:HK$ 55.8
场景供应链金融:将风口变成蓝海
《 场景供应链金融:将风口变成蓝海 》

售價:HK$ 111.8
汗青堂丛书146·布鲁克王朝:一个英国家族在东南亚的百年统治
《 汗青堂丛书146·布鲁克王朝:一个英国家族在东南亚的百年统治 》

售價:HK$ 91.8
人生是旷野啊
《 人生是旷野啊 》

售價:HK$ 72.8
甲骨文丛书· “安国之道”:英国的殖民情报系统及其在亚洲的扩张
《 甲骨文丛书· “安国之道”:英国的殖民情报系统及其在亚洲的扩张 》

售價:HK$ 88.5
台北人(2024版)
《 台北人(2024版) 》

售價:HK$ 87.4

 

建議一齊購買:

+

HK$ 112.2
《深度学习之PyTorch实战计算机视觉》
+

HK$ 107.3
《GAN:实战生成对抗网络》
+

HK$ 83.8
《图解深度学习》
+

HK$ 98.0
《MATLAB R2017a人工智能算法》
+

HK$ 140.6
《云计算系统与人工智能应用》
+

HK$ 83.8
《深度学习:基于Matlab的设计实例(深度学习与MATLAB》
編輯推薦:
《模式识别与人工智能(基于MATLAB)》以实用性、可操作性和实践性为宗旨,以酒瓶颜色分类的设计为例,将理论与实践相结合,介绍各种相关分类器设计。
內容簡介:
《模式识别与人工智能(基于MATLAB)》将模式识别与人工智能理论与实际应用相结合, 以酒瓶颜色分类为例, 介绍了各种算法理论及相应的 MATLAB实现程序。全书共分为10章, 包括模式识别概述、贝叶斯分类器的设计、判别函数分类器的设计、聚类分析、 模糊聚类、神经网络分类器设计、模拟退火算法的分类器设计、遗传算法聚类设计、蚁群算法聚类设计、粒子群算法聚类设计,覆盖了各种常用的模式识别技术。
關於作者:
周润景,内蒙古大学电信学院自动化系教授,中国电子学会高级会员,IEEEEMBS会员。多年来一直从事EDA技术的研究。近五年主持参与航天部项目六项,在国内外出版EDA设计专著20多部,发表论文50多篇,其中EI检索30多篇,近五年来为国防科工局所属单位培训军工电子系统可靠性设计、EMC设计、高速PCB设计1000多人次。在本项目中负责系统仿真。承担国家自然基金项目2项,教育部春晖计划项目2项,自治区自然基金项目1项,自治区高校科研项目2项,军工企业项目4项等。
目錄
目录
第1章模式识别概述
1.1模式识别的基本概念
1.1.1模式的描述方法
1.1.2模式识别系统
1.2模式识别的基本方法
1.3模式识别的应用
习题
第2章贝叶斯分类器设计
2.1贝叶斯决策及贝叶斯公式
2.1.1贝叶斯决策简介
2.1.2贝叶斯公式
2.2基于最小错误率的贝叶斯决策
2.2.1基于最小错误率的贝叶斯决策理论
2.2.2最小错误率贝叶斯分类的计算过程
2.2.3最小错误率贝叶斯分类的MATLAB实现
2.2.4结论
2.3最小风险贝叶斯决策
2.3.1最小风险贝叶斯决策理论
2.3.2最小错误率与最小风险的贝叶斯决策比较
2.3.3贝叶斯算法的计算过程
2.3.4最小风险贝叶斯分类的MATLAB实现
2.3.5结论
习题
第3章判别函数分类器设计
3.1判别函数简介
3.2线性判别函数
3.3线性判别函数的实现
3.4基于LMSE的分类器设计
3.4.1LMSE分类法简介
3.4.2LMSE算法原理
3.4.3LMSE算法步骤
3.4.4LMSE算法的MATLAB实现
3.4.5结论
3.5基于Fisher的分类器设计
3.5.1Fisher判别法简介
3.5.2Fisher判别法的原理
3.5.3Fisher分类器设计
3.5.4Fisher算法的MATLAB实现
3.5.5识别待测样本类别
3.5.6结论
3.6基于支持向量机的分类法
3.6.1支持向量机简介
3.6.2支持向量机基本思想
3.6.3支持向量机的几个主要优点
3.6.4训练集为非线性情况
3.6.5核函数
3.6.6多类分类问题
3.6.7基于SVM的MATLAB实现
3.6.8结论
习题
第4章聚类分析
4.1聚类分析
4.1.1聚类的定义
4.1.2聚类准则
4.1.3基于试探法的聚类设计
4.2数据聚类K均值聚类
4.2.1K均值聚类简介
4.2.2K均值聚类原理
4.2.3K均值算法的优缺点
4.2.4K均值聚类的MATLAB实现
4.2.5待聚类样本的分类结果
4.2.6结论
4.3数据聚类基于取样思想的改进K均值聚类
4.3.1K均值改进算法的思想
4.3.2基于取样思想的改进K均值算法MATLAB实现
4.3.3结论
4.4数据聚类K近邻法聚类
4.4.1K近邻法简介
4.4.2K近邻法的算法研究
4.4.3K近邻法数据分类器的MATLAB实现
4.4.4结论
4.5数据聚类PAM聚类
4.5.1PAM算法简介
4.5.2PAM算法的主要流程
4.5.3PAM算法的MATLAB实现
4.5.4PAM算法的特点
4.5.5K均值算法和PAM算法分析比较
4.5.6结论
4.6数据聚类层次聚类
4.6.1层次聚类方法简介
4.6.2凝聚的和分裂的层次聚类
4.6.3簇间距离度量方法
4.6.4层次聚类方法存在的不足
4.6.5层次聚类的MATLAB实现
4.6.6结论
4.7数据聚类ISODATA算法概述
4.7.1ISODATA算法应用背景
4.7.2ISODATA算法的MATLAB实现
4.7.3结论
习题
第5章模糊聚类分析
5.1模糊逻辑的发展
5.2模糊集合
5.2.1由经典集合到模糊集合
5.2.2模糊集合的基本概念
5.2.3隶属度函数
5.3模糊集合的运算
5.3.1模糊集合的基本运算
5.3.2模糊集合的基本运算规律
5.3.3模糊集合与经典集合的联系
5.4模糊关系与模糊关系的合成
5.4.1模糊关系的基本概念
5.4.2模糊关系的合成
5.4.3模糊关系的性质
5.4.4模糊变换
5.5模糊逻辑及模糊推理
5.5.1模糊逻辑技术
5.5.2语言控制策略
5.5.3模糊语言变量
5.5.4模糊命题与模糊条件语句
5.5.5判断与推理
5.5.6模糊推理
5.6数据聚类模糊聚类
5.6.1模糊聚类的应用背景
5.6.2基于MATLAB的GUI工具的模糊算法构建数据模糊化
5.6.3基于MATLAB的GUI工具的模糊算法构建FIS实现
5.6.4系统结果分析
5.6.5结论
5.7数据聚类模糊C均值聚类
5.7.1模糊C均值聚类的应用背景
5.7.2模糊C均值算法
5.7.3模糊C均值聚类的MATLAB实现
5.7.4模糊C均值聚类结果分析
5.7.5结论
5.8数据聚类模糊ISODATA聚类
5.8.1模糊ISODATA聚类的应用背景
5.8.2模糊ISODATA算法的基本原理
5.8.3模糊ISODATA算法的基本步骤
5.8.4模糊ISODATA算法的MATLAB程序实现
5.8.5结论
5.9模糊神经网络
5.9.1模糊神经网络的应用背景
5.9.2模糊神经网络算法的原理
5.9.3模糊神经网络分类器的MATLAB实现
5.9.4结论
习题
第6章神经网络聚类设计
6.1什么是神经网络
6.1.1神经网络的发展历程
6.1.2生物神经系统的结构及冲动的传递过程
6.1.3人工神经网络的定义
6.2人工神经网络模型
6.2.1人工神经元的基本模型
6.2.2人工神经网络基本构架
6.2.3人工神经网络的工作过程
6.2.4人工神经网络的特点
6.3前馈神经网络
6.3.1感知器网络
6.3.2BP网络
6.3.3BP网络的建立及执行
6.3.4BP网络分类器的MATLAB实现
6.3.5BP网络的其他学习算法的应用
6.4反馈神经网络
6.4.1离散Hopfield网络的结构
6.4.2离散Hopfield网络的工作方式
6.4.3离散Hopfield网络的稳定性和吸引子
6.4.4离散Hopfield网络的连接权设计
6.4.5离散Hopfield网络分类器的MATLAB实现
6.4.6结论
6.5径向基函数
6.5.1径向基函数的网络结构及工作方式
6.5.2径向基函数网络的特点及作用
6.5.3径向基函数网络参数选择
6.5.4RBF网络分类器的MATLAB实现
6.5.5结论
6.6广义回归神经网络
6.6.1GRNN的结构
6.6.2GRNN的理论基础
6.6.3GRNN的特点及作用
6.6.4GRNN分类器的MATLAB实现
6.6.5结论
6.7小波神经网络
6.7.1小波神经网络的基本结构
6.7.2小波神经网络的训练算法
6.7.3小波神经网络结构设计
6.7.4小波神经网络分类器的MATLAB实现
6.7.5结论
6.8其他形式的神经网络
6.8.1竞争型人工神经网络自组织竞争
6.8.2竞争型人工神经网络自组织特征映射神经网络
6.8.3竞争型人工神经网络学习向量量化神经网络
6.8.4概率神经网络
6.8.5CPN神经网络分类器的MATLAB实现
习题
第7章模拟退火算法聚类设计
7.1模拟退火算法简介
7.1.1物理退火过程
7.1.2Metropolis准则
7.1.3模拟退火算法的基本原理
7.1.4模拟退火算法的组成
7.1.5模拟退火算法新解的产生和接受
7.1.6模拟退火算法的基本过程
7.1.7模拟退火算法的参数控制问题
7.2基于模拟退火思想的聚类算法
7.2.1K均值算法的局限性
7.2.2基于模拟退火思想的改进K均值聚类算法
7.2.3几个重要参数的选择
7.3算法实现
7.3.1实现步骤
7.3.2模拟退火实现模式分类的MATLAB程序
7.4结论
习题
第8章遗传算法聚类设计
8.1遗传算法简介
8.2遗传算法原理
8.2.1遗传算法的基本术语
8.2.2遗传算法进行问题求解的过程
8.2.3遗传算法的优缺点
8.2.4遗传算法的基本要素
8.3算法实现
8.3.1种群初始化
8.3.2适应度函数的设计
8.3.3选择操作
8.3.4交叉操作
8.3.5变异操作
8.3.6完整程序及仿真结果
8.4结论
习题
第9章蚁群算法聚类设计
9.1蚁群算法简介
9.2蚁群算法原理
9.2.1基本蚁群算法原理
9.2.2模型建立
9.2.3蚁群算法的特点
9.3基本蚁群算法的实现
9.4算法改进
9.4.1MMAS算法简介
9.4.2完整程序及仿真结果
9.5结论
习题
第10章粒子群算法聚类设计
10.1粒子群算法简介
10.2经典的粒子群算法的运算过程
10.3两种基本的进化模型
10.4改进的粒子群优化算法
10.4.1粒子群优化算法原理
10.4.2粒子群优化算法的基本流程
10.5粒子群算法与其他算法的比较
10.6粒子群算法分类器的MATLAB实现
10.6.1设定参数
10.6.2初始化
10.6.3完整程序及仿真结果
10.7结论
习题
参考文献
內容試閱
前言
随着模式识别技术的迅猛发展,目前该技术已经成为当代高科技研究的重要领域之一,不仅取得了丰富的理论成果,而且其应用范围越来越广泛,几乎遍及各个学科领域,如人工智能、机器人、系统控制、遥感数据分析、生物医学工程、军事目标识别等。由于其在国民经济、国防建设、社会发展的各个方面得到了广泛应用,因而越来越多的人认识到模式识别技术的重要性。本书以实用性为宗旨,以对酒瓶颜色的分类设计为主,将理论与实践相结合,介绍了各种相关分类器设计。第1章介绍模式识别的概念、模式识别的方法及其应用。第2章讨论贝叶斯分类器的设计。首先介绍贝叶斯决策的概念,让读者对贝叶斯理论有所了解,然后介绍基于最小错误率和最小风险的贝叶斯分类器的设计,将理论应用到实践,让读者真正学会运用该算法解决实际问题。第3章讨论判别函数分类器的设计。判别函数包括线性判别函数和非线性判别函数,本章首先介绍判别函数的相关概念,然后介绍线性判别函数LMSE和Fisher分类器的设计及非线性判别函数SVM分类器的设计。第4章讨论聚类分析。聚类分析作为最基础的分类方法,涵盖了大量经典的聚类算法及衍生出来的改进算法。本章首先介绍相关理论知识,然后依次介绍K均值聚类、K均值改进算法、KNN聚类、PAM聚类、层次聚类及ISODATA分类器设计。第5章讨论模糊聚类分析。首先介绍模糊逻辑的发展、模糊数学理论、模糊逻辑与模糊推理等一整套模糊控制理论,然后介绍模糊分类器、模糊C均值分类器、模糊ISODATA分类器及模糊神经网络分类器的设计。第6章讨论神经网络聚类设计。首先介绍神经网络的概念及其模型等理论知识,然后介绍基于BP网络、Hopfield网络、RBF网络、GRNN、小波神经网络、自组织竞争网络、SOM网络、LVQ网络、PNN、CPN的分类器设计。第7章讨论模拟退火算法聚类设计。首先介绍模拟退火算法的基本原理、基本过程,然后介绍其分类器的设计。第8章介绍遗传算法聚类设计,包括遗传算法原理及遗传算法分类器设计的详细过程。第9章介绍蚁群算法聚类设计,包括蚁群算法的基本原理、基于蚁群基本算法的分类器设计和改进的蚁群算法MMAS的分类器设计。第10章介绍粒子群算法聚类设计,包括粒子群算法的运算过程、进化模型、原理及其模式分类的设计过程。本书没有像大多数模式识别的书那样讲解烦琐的理论,而是简明扼要地介绍每一种算法的核心,并通过大量的实例介绍模式识别知识。书中针对每一种模式识别算法,按理论基础和实例操作两部分进行介绍。在读者掌握基础理论后,通过实例可以了解算法的实现思路和方法; 进一步掌握核心代码编写,就可以很快掌握模式识别技术。本书内容来自作者的科研与教学实践。读者在学会各种理论和方法后,可将书中的不同算法加以改造应用于自己的实际工作。本书第1~3章由李楠编写,其余由周润景完成并统稿、定稿。参加本书编写的还有邵盟、南志贤、刘波、李艳、邵绪晨、冯震、崔婧、任自鑫、谢亚楠、祖晓玮、张赫、丁岩、井探亮、邢婧、陈萌。在本书的编写过程中,作者力求完美,但由于水平有限,书中难免有不足之处,敬请指正。作者2018年3月

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.