登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』非线性规划(第3版)

書城自編碼: 3187941
分類:簡體書→大陸圖書→教材研究生/本科/专科教材
作者: Dimitri P. Bertsekas
國際書號(ISBN): 9787302482345
出版社: 清华大学出版社
出版日期: 2018-04-01
版次: 1
頁數/字數: 861/1208000
書度/開本: 16开 釘裝: 平装

售價:HK$ 240.0

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
穿在身上的历史:世界服饰图鉴(增订珍藏版)
《 穿在身上的历史:世界服饰图鉴(增订珍藏版) 》

售價:HK$ 557.8
历史的严妆:解读道学阴影下的南宋史学(中华学术·有道)
《 历史的严妆:解读道学阴影下的南宋史学(中华学术·有道) 》

售價:HK$ 109.8
海外中国研究·江南:中国文雅的源流
《 海外中国研究·江南:中国文雅的源流 》

售價:HK$ 76.2
迟缓的巨人:“大而不能倒”的反思与人性化转向
《 迟缓的巨人:“大而不能倒”的反思与人性化转向 》

售價:HK$ 77.3
我们去往何方:身体、身份和个人价值
《 我们去往何方:身体、身份和个人价值 》

售價:HK$ 67.0
大学问·批判的武器:罗莎·卢森堡与同时代思想者的论争
《 大学问·批判的武器:罗莎·卢森堡与同时代思想者的论争 》

售價:HK$ 98.6
低薪困境:剖析日本经济低迷的根本原因
《 低薪困境:剖析日本经济低迷的根本原因 》

售價:HK$ 66.1
穷人的银行家(诺贝尔和平奖获得者穆罕默德·尤努斯自传)
《 穷人的银行家(诺贝尔和平奖获得者穆罕默德·尤努斯自传) 》

售價:HK$ 76.2

 

建議一齊購買:

+

HK$ 113.3
《线性与非线性规划(第四版)(经济科学译丛;“十三五”国家重点》
+

HK$ 146.9
《凸优化算法》
+

HK$ 183.2
《线性和非线性规划 第3版》
+

HK$ 90.7
《凸优化理论》
+

HK$ 209.4
《非线性规划(第2版)(信息技术和电气工程学科国际知名教材中译》
編輯推薦:
本书为解决连续优化问题提供了全面而实用的方法。内容基于严格的数学分析,但尽量用可视化的方法来讲述。本书将重点放在*的发展以及它们在很多领域的广泛的应用,例如大规模供给系统、信号处理和机器学习等。
內容簡介:
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
目錄
Contents
1. Unconstrained Optimization: Basic
Methods . . . . . . p. 1
1.1. OptimalityConditions . . . . . . . . .
. . . . . . . . . . p. 5
1.1.1. Variational Ideas . . . . . . . . .
. . . . . . . . . . . p. 5
1.1.2. MainOptimalityConditions . . . . . .
. . . . . . . . . p. 15
1.2. GradientMethods Convergence . . . . .
. . . . . . . . . p. 28
1.2.1. DescentDirections and StepsizeRules
. . . . . . . . . . p. 28
1.2.2. ConvergenceResults . . . . . . . . .
. . . . . . . . . p. 49
1.3. GradientMethods Rate ofConvergence .
. . . . . . . . . p. 67
1.3.1. The LocalAnalysisApproach . . . . .
. . . . . . . . . p. 69
1.3.2. TheRole of theConditionNumber . . .
. . . . . . . . . p. 70
1.3.3. ConvergenceRateResults . . . . . . .
. . . . . . . . . p. 82
1.4. NewtonsMethod andVariations . . . . .
. . . . . . . . . p. 95
1.4.1. ModifiedCholeskyFactorization . . .
. . . . . . . . . p. 101
1.4.2. TrustRegionMethods . . . . . . . . .
. . . . . . . p. 103
1.4.3. Variants ofNewtonsMethod . . . . .
. . . . . . . . p. 105
1.4.4. Least Squares and
theGauss-NewtonMethod . . . . . . p. 107
1.5. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 117
2. Unconstrained Optimization: Additional
Methods . . p. 119
2.1. ConjugateDirectionMethods . . . . . .
. . . . . . . . . p. 120
2.1.1. TheConjugateGradientMethod . . . . .
. . . . . . . p. 125
2.1.2. ConvergenceRate
ofConjugateGradientMethod . . . . p. 132
2.2. Quasi-NewtonMethods . . . . . . . . .
. . . . . . . . p. 138
2.3. NonderivativeMethods . . . . . . . . .
. . . . . . . . p. 148
2.3.1. CoordinateDescent . . . . . . . . .
. . . . . . . . p. 149
2.3.2. Direct SearchMethods . . . . . . . .
. . . . . . . . p. 154
2.4. IncrementalMethods . . . . . . . . . .
. . . . . . . . p. 158
2.4.1. IncrementalGradientMethods . . . . .
. . . . . . . . p. 161
2.4.2. IncrementalAggregatedGradientMethods
. . . . . . . p. 172
2.4.3. IncrementalGauss-NewtonMethods . . .
. . . . . . . p. 178
2.4.3. IncrementalNewtonMethods . . . . . .
. . . . . . . p. 185
2.5. DistributedAsynchronousAlgorithms . .
. . . . . . . . . p. 194
v
vi Contents
2.5.1. Totally
andPartiallyAsynchronousAlgorithms . . . . . p. 197
2.5.2. TotallyAsynchronousConvergence . . .
. . . . . . . . p. 198
2.5.3. PartiallyAsynchronousGradient-LikeAlgorithms
. . . . p. 203
2.5.4. ConvergenceRate
ofAsynchronousAlgorithms . . . . . p. 204
2.6. Discrete-TimeOptimalControlProblems .
. . . . . . . . p. 210
2.6.1. Gradient andConjugateGradientMethods
for . . . . . . . .
OptimalControl . . . . . . . . . . . . . .
. . . . . p. 221
2.6.2. NewtonsMethod forOptimalControl . .
. . . . . . . p. 222
2.7. SolvingNonlinearProgrammingProblems -
Some . . . . . . . .
PracticalGuidelines . . . . . . . . . . . .
. . . . . . . p. 227
2.8. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 232
3. Optimization Over a Convex Set . . . . .
. . . . . p. 235
3.1. ConstrainedOptimizationProblems . . .
. . . . . . . . . p. 236
3.1.1. Necessary and SufficientConditions
forOptimality . . . . p. 236
3.1.2. Existence ofOptimal Solutions . . .
. . . . . . . . . p. 246
3.2. FeasibleDirections
-ConditionalGradientMethod . . . . . p. 257
3.2.1. DescentDirections and StepsizeRules
. . . . . . . . . p. 257
3.2.2. TheConditionalGradientMethod . . . .
. . . . . . . p. 262
3.3. GradientProjectionMethods . . . . . .
. . . . . . . . . p. 272
3.3.1. FeasibleDirections and
StepsizeRulesBasedon . . . . . . . .
Projection . . . . . . . . . . . . . . . .
. . . . . p. 272
3.3.2. ConvergenceAnalysis . . . . . . . . .
. . . . . . . . p. 283
3.4. Two-MetricProjectionMethods . . . . .
. . . . . . . . p. 292
3.5. Manifold SuboptimizationMethods . . .
. . . . . . . . . p. 298
3.6. ProximalAlgorithms . . . . . . . . . .
. . . . . . . . p. 307
3.6.1. Rate ofConvergence . . . . . . . . .
. . . . . . . . p. 312
3.6.2. Variants of theProximalAlgorithm . .
. . . . . . . . p. 318
3.7. BlockCoordinateDescentMethods . . . .
. . . . . . . . p. 323
3.7.1. Variants ofCoordinateDescent . . . .
. . . . . . . . p. 327
3.8. NetworkOptimizationAlgorithms . . . .
. . . . . . . . . p. 331
3.9. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 338
4. LagrangeMultiplierTheory . . . . . . . .
. . . . p. 343
4.1. NecessaryConditions
forEqualityConstraints . . . . . . . p. 345
4.1.1. ThePenaltyApproach . . . . . . . . .
. . . . . . . p. 349
4.1.2. TheEliminationApproach . . . . . . .
. . . . . . . p. 352
4.1.3. The LagrangianFunction . . . . . . .
. . . . . . . . p. 356
4.2. SufficientConditions and
SensitivityAnalysis . . . . . . . . p. 364
4.2.1. TheAugmentedLagrangianApproach . . .
. . . . . . p. 365
4.2.2. TheFeasibleDirectionApproach . . . .
. . . . . . . . p. 369
4.2.3. Sensitivity . . . . . . . . . . . .
. . . . . . . . . p. 370
4.3. InequalityConstraints . . . . . . . .
. . . . . . . . . . p. 376
4.3.1. Karush-Kuhn-Tucker Necessary
Conditions . . . . . . . p. 378
Contents vii
4.3.2. SufficientConditions and Sensitivity
. . . . . . . . . . p. 383
4.3.3. Fritz JohnOptimalityConditions . . .
. . . . . . . . p. 386
4.3.4. ConstraintQualifications
andPseudonormality . . . . . p. 392
4.3.5. Abstract SetConstraints and
theTangentCone . . . . . p. 399
4.3.6. Abstract SetConstraints,Equality,
and Inequality . . . . . . .
Constraints . . . . . . . . . . . . . . . .
. . . . . p. 415
4.4. LinearConstraints andDuality . . . . .
. . . . . . . . . p. 429
4.4.1. ConvexCostFunction
andLinearConstraints . . . . . . p. 429
4.4.2. DualityTheory: ASimpleFormforLinear
. . . . . . . . . .
Constraints . . . . . . . . . . . . . . . .
. . . . . p. 432
4.5. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 441
5. Lagrange Multiplier Algorithms . . . . .
. . . . . p. 445
5.1. Barrier and InteriorPointMethods . . .
. . . . . . . . . p. 446
5.1.1. PathFollowingMethods
forLinearProgramming . . . . p. 450
5.1.2. Primal-DualMethods
forLinearProgramming . . . . . . p. 458
5.2. Penalty andAugmentedLagrangianMethods
. . . . . . . . p. 469
5.2.1. TheQuadraticPenaltyFunctionMethod .
. . . . . . . p. 471
5.2.2. MultiplierMethods Main Ideas . . .
. . . . . . . . . p. 479
5.2.3. ConvergenceAnalysis
ofMultiplierMethods . . . . . . . p. 488
5.2.4. Duality and
SecondOrderMultiplierMethods . . . . . . p. 492
5.2.5. Nonquadratic Augmented Lagrangians -
The Exponential . . .
Method ofMultipliers . . . . . . . . . . .
. . . . . p. 494
5.3. ExactPenalties
SequentialQuadraticProgramming . . . . p. 502
5.3.1.
NondifferentiableExactPenaltyFunctions . . . . . . . p. 503
5.3.2. SequentialQuadraticProgramming . . .
. . . . . . . p. 513
5.3.3. DifferentiableExactPenaltyFunctions
. . . . . . . . . p. 520
5.4. LagrangianMethods . . . . . . . . . .
. . . . . . . . p. 527
5.4.1. First-OrderLagrangianMethods . . . .
. . . . . . . . p. 528
5.4.2. Newton-LikeMethods
forEqualityConstraints . . . . . p. 535
5.4.3. GlobalConvergence . . . . . . . . .
. . . . . . . . p. 545
5.4.4. AComparisonofVariousMethods . . . .
. . . . . . . p. 548
5.5. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 550
6. Duality andConvexProgramming . . . . . .
. . . p. 553
6.1. Duality andDualProblems . . . . . . .
. . . . . . . . p. 554
6.1.1. GeometricMultipliers . . . . . . . .
. . . . . . . . p. 556
6.1.2. TheWeakDualityTheorem . . . . . . .
. . . . . . . p. 561
6.1.3. Primal andDualOptimal Solutions . .
. . . . . . . . p. 566
6.1.4. Treatment ofEqualityConstraints . .
. . . . . . . . . p. 568
6.1.5. SeparableProblems and theirGeometry
. . . . . . . . p. 570
6.1.6. Additional IssuesAboutDuality . . .
. . . . . . . . . p. 575
6.2. ConvexCost LinearConstraints . . . .
. . . . . . . . . p. 582
6.3. ConvexCost ConvexConstraints . . . .
. . . . . . . . p. 589
viii Contents
6.4. ConjugateFunctions andFenchelDuality .
. . . . . . . . p. 598
6.4.1. ConicProgramming . . . . . . . . . .
. . . . . . . p. 604
6.4.2. MonotropicProgramming . . . . . . .
. . . . . . . . p. 612
6.4.3. NetworkOptimization . . . . . . . .
. . . . . . . . p. 617
6.4.4. Games and theMinimaxTheorem . . . .
. . . . . . . p. 620
6.4.5. ThePrimalFunction and
SensitivityAnalysis . . . . . . p. 623
6.5. DiscreteOptimization andDuality . . .
. . . . . . . . . p. 630
6.5.1. Examples
ofDiscreteOptimizationProblems . . . . . . p. 631
6.5.2. Branch-and-Bound . . . . . . . . . .
. . . . . . . . p. 639
6.5.3. LagrangianRelaxation . . . . . . . .
. . . . . . . . p. 648
6.6. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 660
7. DualMethods . . . . . . . . . . . . . .
. . . . p. 663
7.1. Dual Derivatives and Subgradients . .
. . . . . . . . . . p. 666
7.2. Dual Ascent Methods for Differentiable
Dual Problems . . . p. 673
7.2.1. CoordinateAscent
forQuadraticProgramming . . . . . p. 673
7.2.2. SeparableProblems
andPrimalStrictConvexity . . . . . p. 675
7.2.3. Partitioning andDual StrictConcavity
. . . . . . . . . p. 677
7.3. Proximal andAugmentedLagrangianMethods
. . . . . . . p. 682
7.3.1. TheMethod ofMultipliers as aDual . .
. . . . . . . . . . .
ProximalAlgorithm . . . . . . . . . . . . .
. . . . p. 682
7.3.2. EntropyMinimization andExponential .
. . . . . . . . . .
Method ofMultipliers . . . . . . . . . . .
. . . . . p. 686
7.3.3.
IncrementalAugmentedLagrangianMethods . . . . . . p. 687
7.4. AlternatingDirectionMethods
ofMultipliers . . . . . . . . p. 691
7.4.1. ADMMApplied to SeparableProblems . .
. . . . . . . p. 699
7.4.2.
ConnectionsBetweenAugmentedLagrangian- . . . . . . . .
RelatedMethods . . . . . . . . . . . . . .
. . . . . p. 703
7.5. Subgradient-Based Optimization Methods
. . . . . . . . . p. 709
7.5.1. Subgradient Methods . . . . . . . .
. . . . . . . . . p. 709
7.5.2. Approximate and Incremental
Subgradient Methods . . . p. 714
7.5.3. Cutting PlaneMethods . . . . . . . .
. . . . . . . . p. 717
7.5.4. Ascent andApproximateAscentMethods .
. . . . . . . p. 724
7.6. DecompositionMethods . . . . . . . . .
. . . . . . . . p. 735
7.6.1. LagrangianRelaxation of
theCouplingConstraints . . . . p. 736
7.6.2. Decomposition byRight-Hand
SideAllocation . . . . . . p. 739
7.7. Notes and Sources . . . . . . . . . .
. . . . . . . . . p. 742
Appendix A: Mathematical Background . . . .
. . . . p. 745
A.1. Vectors andMatrices . . . . . . . . .
. . . . . . . . . p. 746
A.2. Norms, Sequences,Limits, andContinuity
. . . . . . . . . p. 749
A.3. SquareMatrices andEigenvalues . . . .
. . . . . . . . . p. 757
A.4. Symmetric andPositiveDefiniteMatrices
. . . . . . . . . p. 760
A.5. Derivatives . . . . . . . . . . . . .
. . . . . . . . . p. 765
Contents ix
A.6. ConvergenceTheorems . . . . . . . . .
. . . . . . . . p. 770
AppendixB:ConvexAnalysis . . . . . . . . .
. . . p. 783
B.1. Convex Sets andFunctions . . . . . . .
. . . . . . . . p. 783
B.2. Hyperplanes . . . . . . . . . . . . .
. . . . . . . . . p. 793
B.3. Cones andPolyhedralConvexity . . . . .
. . . . . . . . p. 796
B.4. ExtremePoints andLinearProgramming . .
. . . . . . . p. 798
B.5. Differentiability Issues . . . . . . .
. . . . . . . . . . . p. 803
Appendix C: Line Search Methods . . . . . .
. . . . p. 809
C.1. Cubic Interpolation . . . . . . . . .
. . . . . . . . . . p. 809
C.2. Quadratic Interpolation . . . . . . .
. . . . . . . . . . p. 810
C.3. TheGolden SectionMethod . . . . . . .
. . . . . . . . p. 812
Appendix D: Implementation of Newtons
Method . . . p. 815
D.1. CholeskyFactorization . . . . . . . .
. . . . . . . . . p. 815
D.2. Application to aModifiedNewtonMethod .
. . . . . . . . p. 817
References . . . . . . . . . . . . . . . .
. . . . p. 821
Index . . . . . . . . . . . . . . . . . . .
. . . . p. 857
內容試閱
Preface to the Third Edition
The third edition of the book is a
thoroughly rewritten version of the 1999
second edition. New material was included,
some of the old material was
discarded, and a large portion of the
remainder was reorganized or revised.
The total number of pages has increased by
about 10 percent.
Aside from incremental improvements, the
changes aim to bring the
book up-to-date with recent research
progress, and in harmony with the major
developments in convex optimization theory
and algorithms that have
occurred in the meantime. These
developments were documented in three
of my books: the 2015 book Convex
Optimization Algorithms, the 2009
book Convex Optimization Theory, and the
2003 book Convex Analysis
and Optimization coauthored
with Angelia Nedic and Asuman Ozdaglar.
A major difference is that these books have
dealt primarily with convex, possibly
nondifferentiable, optimization problems
and rely on convex analysis,
while the present book focuses primarily on
algorithms for possibly nonconvex
differentiable problems, and relies on
calculus and variational analysis.
Having written several interrelated
optimization books, I have come to
see nonlinear programming and its
associated duality theory as the lynchpin
that holds together deterministic
optimization. I have consequently set as an
objective for the present book to integrate
the contents of my books, together
with internet-accessible material, so that
they complement each other and
form a unified whole. I have thus provided
bridges to my other works with
extensive references to generalizations,
discussions, and elaborations of the
analysis given here, and I have used
throughout fairly consistent notation and
mathematical level.
Another connecting link of my books is that
they all share the same style:
they rely on rigorous analysis, but they
also aim at an intuitive exposition that
makes use of geometric visualization. This
stems from my belief that success
in the practice of optimization strongly
depends on the intuitive as well as
the analytical understanding of the
underlying theory and algorithms.
Some of the more prominent new features of
the present edition are:
a An expanded coverage of incremental
methods and their connections to
stochastic gradient methods, based in part
on my 2000 joint work with
Angelia Nedic; see Section 2.4
and Section 7.3.2.
b A discussion of asynchronous
distributed algorithms based in large part
on my 1989 Parallel and Distributed
Computation book coauthored
xvii
xviii Preface to the Third Edition
with John Tsitsiklis; see Section 2.5.
c A discussion of the proximal algorithm
and its variations in Section 3.6,
and the relation with the method of
multipliers in Section 7.3.
d A substantial coverage of the
alternating direction method of multipliers
ADMM in Section 7.4, with a discussion of
its many applications and
variations, as well as references to my
1989 Parallel and Distributed
Computation and 2015 Convex Optimization
Algorithms books.
e A fairly detailed treatment of conic
programming problems in Section
6.4.1.
f A discussion of the question of
existence of solutions in constrained optimization,
based on my 2007 joint work with Paul Tseng
[BeT07], which
contains further analysis; see Section
3.1.2.
g Additional material on network flow
problems in Section 3.8 and 6.4.3,
and their extensions to monotropic
programming in Section 6.4.2, with
references to my 1998 Network
Optimization book.
h An expansion of the material of Chapter
4 on Lagrangemultiplier theory,
using a strengthened version of the Fritz
John conditions, and the notion
of pseudonormality, based on my 2002 joint
work with Asuman Ozdaglar.
i An expansion of the material of Chapter
5 on Lagrange multiplier algorithms,
with references to my 1982 Constrained
Optimization and
Lagrange Multiplier Methods book.
The book contains a few new exercises. As
in the second edition, many
of the theoretical exercises have been
solved in detail and their solutions have
been posted in the books internet site
http:www.athenasc.comnonlinbook.html
These exercises have been marked with the
symbolsWWW. Many other exercises
contain detailed hints andor references to
internet-accessible sources.
The books internet site also contains
links to additional resources, such as
many additional solved exercises from my
convex optimization books, computer
codes, my lecture slides from MIT Nonlinear
Programming classes, and
full course contents from the MIT
OpenCourseWare OCW site.
I would like to express my thanks to the
many colleagues who contributed
suggestions for improvement of the third
edition. In particular, let
me note with appreciation my principal
collaborators on nonlinear programming
topics since the 1999 second edition:
Angelia Nedic, Asuman Ozdaglar,
Paul Tseng, Mengdi Wang, and Huizhen
Janey Yu.
Dimitri P. Bertsekas
June, 2016

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.