新書推薦:
《
小麦文明:“黄金石油”争夺战
》
售價:HK$
97.9
《
悬壶杂记全集:老中医多年临证经验总结(套装3册) 中医医案诊疗思路和处方药应用
》
售價:HK$
135.1
《
无法忍受谎言的人:一个调查记者的三十年
》
售價:HK$
63.8
《
战争社会学专论
》
售價:HK$
118.8
《
剑桥意大利戏剧史(剑桥世界戏剧史译丛)
》
售價:HK$
162.8
《
教育何用:重估教育的价值
》
售價:HK$
65.8
《
理想城市:环境与诗性
》
售價:HK$
85.8
《
大模型推荐系统:算法原理、代码实战与案例分析
》
售價:HK$
97.9
|
編輯推薦: |
(1)乐逗游戏高级数据分析师撰写,资深R语言技术工程师近10年数据挖掘与分析经验总结。
(2)以解决游戏行业的具体问题为目标,技术和业务双重导向,系统阐述游戏数据分析与挖掘的技术、方法论和工具,以及游戏业务的理解与思考。
|
內容簡介: |
这是一部从大数据技术和游戏业务双重维度讲解如何利用结果数据指导商业决策的实战性著作,乐逗游戏高级数据分析师撰写,是他近10年数据挖掘与分析经验的总结。
传统的数据分析类图书重技术而轻业务,本书二者并重:技术方面,以游戏数据的挖掘与分析为核心,辐射游戏数据处理的各个环节,系统讲解游戏数据挖掘与分析的技术、方法论和工具;业务方面,所有案例的讲解过程中都对相关业务进行了重点解读,旨在加深数据分析师对游戏业务的理解和思考,从而更好地利用R语言技术解决游戏数据处理中的各种复杂问题。
*部分:基础篇(第1~4章)
主要讲解了游戏数据分析的流程,以及进行游戏数据分析所需要掌握的R语言技术和相关工具(软件包)的使用方法,这是利用R语言进行数据分析必备的基础。
第二部分:实战篇(第5~11章)
详细讲解了游戏数据的预处理、常用分析方法、玩家路径分析和用户数据分析等核心内容,包含游戏数据分析全流程的技巧和方法论,以及对游戏业务的深入思考。
第三部分:提高篇(第12~13章)这是一部从大数据技术和游戏业务双重维度讲解如何利用结果数据指导商业决策的实战性著作,乐逗游戏高级数据分析师撰写,是他近10年数据挖掘与分析经验的总结。
传统的数据分析类图书重技术而轻业务,本书二者并重:技术方面,以游戏数据的挖掘与分析为核心,辐射游戏数据处理的各个环节,系统讲解游戏数据挖掘与分析的技术、方法论和工具;业务方面,所有案例的讲解过程中都对相关业务进行了重点解读,旨在加深数据分析师对游戏业务的理解和思考,从而更好地利用R语言技术解决游戏数据处理中的各种复杂问题。
*部分:基础篇(第1~4章)
主要讲解了游戏数据分析的流程,以及进行游戏数据分析所需要掌握的R语言技术和相关工具(软件包)的使用方法,这是利用R语言进行数据分析必备的基础。
第二部分:实战篇(第5~11章)
详细讲解了游戏数据的预处理、常用分析方法、玩家路径分析和用户数据分析等核心内容,包含游戏数据分析全流程的技巧和方法论,以及对游戏业务的深入思考。
第三部分:提高篇(第12~13章)
详细介绍了R语言的图形界面工具Rattle和Web开发框架shiny包的使用,能帮助数据分析师们解决更复杂的问题。
|
關於作者: |
谢佳标
资深数据分析与挖掘专家,有近10年的数据挖掘与分享相关工作的经验;曾经从事过电商、电购、电力和游戏等行业,熟悉不同行业的数据特点,有丰富的利用R语言进行数据挖掘实战经验。微软中国最有价值专家(MVP)。
目前供职于国内知名游戏公司乐逗游戏,任高级数据分析师。作为创梦天地数据挖掘组负责人,带领团队搭建用户画像标签库和智能推荐系统,对游戏数据进行深度挖掘, 主要利用R语言进行大数据的挖掘和可视化工作。
多次受邀在中国R语言大会上发表演讲,曾受邀在中山大学、贵州大学、华南师范大学、厦门大学等多所高效做R语言主题分享。同时还研发了《R语言基础培训》《数据分析之R语言实战》《机器学习与R语言实践》《Rattle:可视化数据挖掘工具》《R语言行业案例实战》等有影响力的精品课程,合著有《R语言与数据挖掘》和《数据实践之美》等书籍
|
目錄:
|
目录 Contents
前言
第一篇 基础篇
第1章 什么是游戏数据分析2
1.1 为什么要对游戏进行分析2
1.2 游戏数据分析的流程3
1.3 数据分析师的能力要求4
1.3.1 数据处理能力5
1.3.2 数据挖掘能力6
1.3.3 数据应用能力8
1.4 小结8
第2章 必备R语言基础9
2.1 开发环境准备和快速入门9
2.1.1 R语言简介9
2.1.2 R的安装10
2.1.3 其他辅助工具10
2.1.4 R快速入门12
2.2 数据对象19
2.2.1 向量20
2.2.2 矩阵与数组24
2.2.3 列表和数据框27
2.3 数据导入30
2.3.1 利用RStudio导入30
2.3.2 文本文件的导入32
2.3.3 Excel文件的导入33
2.3.4 数据库文件的导入34
2.3.5 网络数据的爬取38
2.4 小结42
第3章 R语言绘图重要技术43
3.1 常用图形参数43
3.1.1 颜色元素43
3.1.2 文字元素46
3.1.3 点元素46
3.1.4 线元素48
3.2 低级绘图函数48
3.2.1 标题48
3.2.2 坐标轴50
3.2.3 图例52
3.2.4 网格线52
3.2.5 点54
3.2.6 文字54
3.2.7 线55
3.3 高级绘图函数57
3.3.1 散点图58
3.3.2 气泡图59
3.3.3 线图60
3.3.4 柱状图62
3.3.5 饼图62
3.3.6 直方图和密度图63
3.3.7 Q-Q图65
3.3.8 箱线图66
3.3.9 茎叶图66
3.3.10 点图67
3.3.11 马赛克图67
3.4 小结69
第4章 高级绘图工具70
4.1 lattice包绘图工具70
4.1.1 绘图特色70
4.1.2 基本图形77
4.2 ggplot2包绘图工具93
4.2.1 从qplot开始93
4.2.2 ggplot作图96
4.2.3 ggthemes主题包101
4.3 交互式绘图工具103
4.3.1 rCharts包104
4.3.2 recharts包108
4.3.3 rbokeh包118
4.3.4 plotly包119
4.3.5 googleVis包122
4.3.6 其他基于htmlwidgets包开发的交互包124
4.4 小结132
第二篇 实战篇
第5章 游戏数据预处理134
5.1 数据抽样134
5.1.1 数据抽样的必要性134
5.1.2 类失衡处理方法:SMOTE135
5.1.3 数据随机抽样:sample函数138
5.1.4 数据等比抽样:createData-Partition函数139
5.1.5 用于交叉验证的样本抽样142
5.2 数据清洗143
5.2.1 缺失值判断及处理144
5.2.2 异常值判断处理152
5.3 数据转换158
5.3.1 产生衍生变量158
5.3.2 数据分箱159
5.3.3 数据标准化转换160
5.4 数据哑变量处理162
5.5 小结165
第6章 游戏数据分析的常用方法166
6.1 游戏数据可视化166
6.1.1 单指标数据可视化166
6.1.2 双指标数据可视化167
6.1.3 三指标数据可视化167
6.2 游戏数据趋势分析169
6.2.1 同比、环比169
6.2.2 趋势线拟合170
6.2.3 时间序列数据预测171
6.3 游戏数据相关分析179
6.3.1 相关分析基本原理179
6.3.2 相关关系可视化181
6.3.3 活跃时间段相关分析184
6.4 游戏数据中的降维技术186
6.4.1 主成分及因子分析基本原理186
6.4.2 对应分析基本原理188
6.4.3 玩家偏好分析188
6.5 小结191
第7章 漏斗模型与路径分析192
7.1 漏斗模型与路径分析的主要区别和联系192
7.2 漏斗模型193
7.2.1 漏斗模型的主要应用场景193
7.2.2 分析案例:新手教程漏斗模型194
7.3 路径分析197
7.3.1 路径分析的主要应用场景197
7.3.2 路径分析的主要算法198
7.3.3 分析案例:游戏点击事件路径分析202
7.4 小结208
第8章 留存分析209
8.1 指标概述209
8.1.1 用户留存209
8.1.2 流失分析211
8.2 留存率的分析及预测212
8.2.1 留存率曲线213
8.2.2 留存率预测曲线213
8.2.3 优化预测曲线216
8.3 用户流失预测218
8.3.1 分类及模型评估220
8.3.2 活跃用户流失预测233
8.4 小结238
第9章 用户分析239
9.1 用户分类239
9.1.1 新老用户240
9.1.2 活跃用户241
9.1.3 用户习惯243
9.2 LTV244
9.2.1 LTV的定义244
9.2.2 LTV的预测244
9.3 用户物品购买关联分析247
9.3.1 常用关联规则算法248
9.3.2 R中的实现250
9.3.3 案例:对用户购买物品进行关联分析251
9.4 基于用户物品购买智能推荐259
9.4.1 智能推荐模型构建及评估259
9.4.2 案例:对用户物品购买进行智能推荐262
9.5 社会网络分析264
9.5.1 网络图的基本概念264
9.5.2 网络图的R语言实现266
9.5.3 R与Gephi的结合270
9.5.4 案例:分析用户物品购买分类275
9.6 小结279
第10章 渠道分析280
10.1 渠道分析的意义280
10.2 建立渠道数据监控体系282
10.2.1 构建数据分析指标283
10.2.2 建立渠道数据监控体系287
10.3 渠道用户质量评级293
10.3.1 渠道用户质量评级的背景和目的293
10.3.2 渠道用户质量打分模型293
10.3.3 分析案例:渠道用户质量打分294
10.4 小结298
第11章 收入分析299
11.1 宏观收入分析299
11.2 游戏经济与用户关系分析302
11.2.1 背景及数据302
11.2.2 数据探索分析303
11.2.3 模型构建308
11.3 RFM模型研究310
11.3.1 RFM模型研究背景及原理310
11.3.2 案例:付费用户RFM模型研究312
11.3.3 RFM模型的不足及改进314
11.4 小结316
第三篇 提高篇
第12章 Rattle:可视化数据挖掘工具318
12.1 Rattle简介及安装318
12.1.1 Rattle简介318
12.1.2 Rattle安装319
12.2 功能预览319
12.3 数据导入320
12.3.1 导入CSV数据321
12.3.2 导入ARFF数据325
12.3.3 导入ODBC数据326
12.3.4 R Dataset导入其他数据源328
12.3.5 导入RData File数据集330
12.3.6 导入Library数据332
12.4 数据探索333
12.4.1 数据总体概况333
12.4.2 数据分布探索335
12.4.3 相关性338
12.4.4 主成分341
12.4.5 交互图343
12.5 数据建模348
12.5.1 聚类分析348
12.5.2 关联规则352
12.5.3 决策树354
12.5.4 随机森林356
12.6 模型评估360
12.6.1 混淆矩阵360
12.6.2 风险图360
12.6.3 ROC曲线及相关曲线361
12.6.4 模型得分数据集361
12.7 小结364
第13章 快速搭建游戏数据分析平台365
13.1 shiny快速入门365
13.2 shinydashboard包375
13.3 案例一:搭建数据可视化原型379
13.4 案例二:用户细分及付费预测平台388
13.5 案例三:渠道用户打分平台395
13.6 小结402
|
|