登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』高性能Python(影印版)

書城自編碼: 2551245
分類:簡體書→大陸圖書→計算機/網絡行业软件及应用
作者: 戈雷利克 (Micha Gorelick),欧日沃尔德 (I
國際書號(ISBN): 9787564153854
出版社: 东南大学出版社
出版日期: 2015-02-01
版次: 1 印次: 1
頁數/字數: 351/455000
書度/開本: 16开 釘裝: 平装

售價:HK$ 144.3

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
狂飙年代:18世纪俄国的新文化和旧文化(第三卷)
《 狂飙年代:18世纪俄国的新文化和旧文化(第三卷) 》

售價:HK$ 177.0
协和专家大医说:医话肿瘤
《 协和专家大医说:医话肿瘤 》

售價:HK$ 109.8
潜水指南 全彩图解第4版
《 潜水指南 全彩图解第4版 》

售價:HK$ 132.2
超大规模集成电路设计——从工具到实例
《 超大规模集成电路设计——从工具到实例 》

售價:HK$ 88.5
村上春树·旅(一本充满村上元素的旅行指南,带你寻访电影《挪威的森林》拍摄地,全彩印刷;200余幅摄影作品)
《 村上春树·旅(一本充满村上元素的旅行指南,带你寻访电影《挪威的森林》拍摄地,全彩印刷;200余幅摄影作品) 》

售價:HK$ 66.1
智能驾驶硬件在环仿真测试与实践
《 智能驾驶硬件在环仿真测试与实践 》

售價:HK$ 155.7
都铎王朝时期英格兰海事法庭研究
《 都铎王朝时期英格兰海事法庭研究 》

售價:HK$ 87.4
中年成长:突破人生瓶颈的心理自助方案
《 中年成长:突破人生瓶颈的心理自助方案 》

售價:HK$ 65.0

 

建議一齊購買:

+

HK$ 243.6
《深度学习》
+

HK$ 114.6
《TensorFlow技术解析与实战》
+

HK$ 114.6
《深入浅出深度学习:原理剖析与Python实践》
+

HK$ 181.3
《金融数学中的带跳随机微分方程数值解》
+

HK$ 201.6
《流畅的Python》
+

HK$ 156.6
《现代C++探秘:编码、工程与科研必修(基于C++ 14)(英》
內容簡介:
你的Python代码也许运行正确,但是你需要运行得更快速。通过探讨隐藏在设计备选方案中的基础理论,戈雷利克和欧日沃尔德编著的《高性能Python》将帮助你更深入地理解Python的实现。你将了解如何定位性能瓶颈,从而显著提升高数据流量程序中的代码执行效率。
你该如何利用多核架构和集群?或者你该如何搭建一个可以自由伸缩而不会影响可靠性的系统?有经验的Python程序员将会学习到这类问题的具体解决方案,以及来自于各个公司的如何把高性能Python用于社交媒体分析、产品机器学习和其他场景中去的曲折故事。
目錄
Preface
1. Understanding Performant Python
 The Fundamental Computer System
 Computing Units
 Memory Units
 Communications Layers
 Putting the Fundamental Elements Together
 Idealized Computing Versus the Python Virtual Machine
 So Why Use Python?
2. Profiling to Find Bottlenecks
 Profiling Efficiently
 Introducing the Julia Set
 Calculating the Full Julia Set
 Simple Approaches to Timing--print and a Decorator
 Simple Timing Using the Unix time Command
 Using the cProfile Module
 Using runsnakerun to Visualize cProfile Output
 Using line_profiler for Line-by-Line Measurements
 Using memory_profiler to Diagnose Memory Usage
 Inspecting Objects on the Heap with heapy
 Using dowser for Live Graphing of Instantiated Variables
 Using the dis Module to Examine CPython Bytecode
 Different Approaches, Different Complexity
 Unit Testing During Optimization to Maintain Correctness
 No-op @profile Decorator
 Strategies to Profile Your Code Successfully
 Wrap-Up
3. Lists and Tuples
 A More Efficient Search
 Lists Versus Tuples
 Lists as Dynamic Arrays
 Tuples As Static Arrays
 Wrap-Up
4. Dictionaries and Sets
 How Do Dictionaries and Sets Work?
 Inserting and Retrieving
 Deletion
 Resizing
 Hash Functions and Entropy
 Dictionaries and Namespaces
 Wrap-Up
5. Iterators and Generators
 Iterators for Infinite Series
 Lazy Generator Evaluation
 Wrap-Up
6. Matrix and Vector Computation
 Introduction to the Problem
 Aren''t Python Lists Good Enough?
 Problems with Allocating Too Much
 Memory Fragmentation
 Understanding perf
 Making Decisions with perf''s Output
 Enter numpy
 Applying numpy to the Diffusion Problem
 Memory Allocations and In-Place Operations
 Selective Optimizations: Finding What Needs to Be Fixed
 numexpr: Making In-Place Operations Faster and Easier
 A Cautionary Tale: Verify "Optimizations" scipy
 Wrap-Up
7. Compiling to C
 What Sort of Speed Gains Are Possible?
 JIT Versus AOT Compilers
 Why Does Type Information Help the Code Run Faster?
 Using a C Compiler
 Reviewing the Julia Set Example
 Cvthon
 Compiling a Pure-Python Version Using Cython
 Cython Annotations to Analyze a Block of Code
 Adding Some Type Annotations
 Shed Skin
 Building an Extension Module
 The Cost of the Memory Copies
 Cython and numpy
 ParaUelizing the Solution with OpenMP on One Machine
 Numba
 Pythran
 PyPy
 Garbage Collection Differences
 Running PyPy and Installing Modules
 When to Use Each Technology
 Other Upcoming Projects
 A Note on Graphics Processing Units GPUs
 A Wish for a Future Compiler Project
 Foreign Function Interfaces
 ctypes
 cffi
 f2py
 CPython Module
 Wrap-Up
8. Concurrency
 Introduction to Asynchronous Programming
 Serial Crawler
 gevent
 tornado
 AsyncIO
 Database Example
 Wrap-Up
9. lhe multiprocessing Module
 An Overview of the Multiprocessing Module
 Estimating Pi Using the Monte Carlo Method
 Estimating Pi Using Processes and Threads
 Using Python Objects
 Random Numbers in Parallel Systems
 Using numpy
 Finding Prime Numbers
 Queues of Work
 Verifying Primes Using Interprocess Communication
 Serial Solution
 Naive Pool Solution
 A Less Naive Pool Solution
 Using Manager.Value as a Flag
 Using Redis as a Flag
 Using RawValue as a Flag
 Using mmap as a Flag
 Using mmap as a Flag Redux
 Sharing numpy Data with multiprocessing
 Synchronizing File and Variable Access
 File Locking
 Locking a Value
 Wrap-Up
10. Clusters and Job Queues
 Benefits of Clustering
 Drawbacks of Clustering
 $462 Million Wall Street Loss Through Poor Cluster Upgrade Strategy
 Skype''s 24-Hour Global Outage
 Common Cluster Designs
 How to Start a Clustered Solution
 Ways to Avoid Pain When Using Clusters
 Three Clustering Solutions
 Using the Parallel Python Module for Simple Local Clusters
 Using IPython Parallel to Support Research
 NSQ for Robust Production Clustering
 Queues
 Pubsub
 Distributed Prime Calculation
 Other Clustering Tools to Look At
 Wrap-Up
11. Using Less RAM
 Objects for Primitives Are Expensive
 The Array Module Stores Many Primitive Objects Cheaply
 Understanding the RAM Used in a Collection
 Bytes Versus Unicode
 Efficiently Storing Lots of Text in RAM
 Trying These Approaches on 8 Million Tokens
 Tips for Using Less RAM
 Probabilistic Data Structures
 Very Approximate Counting with a 1-byte Morris Counter
 K-Minimum Values
 Bloom Filters
 LogLog Counter
 Real-World Example
12. Lessons from the Field
 Adaptive Lab''s Social Media Analytics SOMA
 Python at Adaptive Lab
 SoMA''s Design
 Our Development Methodology
 Maintaining SoMA
 Advice for Fellow Engineers
 Making Deep Learning Fly with RadimRehurek.com
 The Sweet Spot
 Lessons in Optimizing
 Wrap-Up
 Large-Scale Productionized Machine Learning at Lyst.com
 Pythons Place at Lyst
 Cluster Design
 Code Evolution in a Fast-Moving Start-Up
 Building the Recommendation Engine
 Reporting and Monitoring
 Some Advice
 Large-Scale Social Media Analysis at Smesh
 Pythons Role at Smesh
 The Platform
 High Performance Real-Time String Matching
 Reporting, Monitoring, Debugging, and Deployment
 PyPy for Successful Web and Data Processing Systems
 Prerequisites
 The Database
 The Web Application
 OCR and Translation
 Task Distribution and Workers
 Conclusion
 Task Queues at Lanyrd.com
 Python''s Role at Lanyrd
 Making the Task Queue Performant
 Reporting, Monitoring, Debugging, and Deployment
 Advice to a Fellow Developer
 Index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.