登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書

『簡體書』基于人工智能方法的网络空间安全

書城自編碼: 3690412
分類:簡體書→大陸圖書→計算機/網絡信息安全
作者: [澳]莱斯利·F. 西科斯[Leslie F. Sikos]
國際書號(ISBN): 9787111691808
出版社: 机械工业出版社
出版日期: 2021-11-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 98.8

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
爱的流动
《 爱的流动 》

售價:HK$ 64.9
帝国之翼:胡林翼的官场与战场
《 帝国之翼:胡林翼的官场与战场 》

售價:HK$ 85.8
史记全本注译(布面精装,全套9册) 附赠“朕来也”文创扑克牌1副!
《 史记全本注译(布面精装,全套9册) 附赠“朕来也”文创扑克牌1副! 》

售價:HK$ 715.0
ROS 2智能机器人开发实践
《 ROS 2智能机器人开发实践 》

售價:HK$ 140.8
心理韧性:你总是能整装待发
《 心理韧性:你总是能整装待发 》

售價:HK$ 65.8
大学问·运动场内外:近代江南的女子体育(1895—1937)
《 大学问·运动场内外:近代江南的女子体育(1895—1937) 》

售價:HK$ 97.9
无凶之夜
《 无凶之夜 》

售價:HK$ 65.8
机器人自动化集成系统设计(NX MCD)
《 机器人自动化集成系统设计(NX MCD) 》

售價:HK$ 61.6

 

建議一齊購買:

+

HK$ 181.8
《信息隐私工程与设计》
+

HK$ 108.6
《混沌及其信息安全应用》
+

HK$ 120.8
《Web代码安全漏洞深度剖析》
內容簡介:
本书介绍了一系列结合人工智能技术处理网络空间安全问题的方法,包括处理网络威胁情报、为恶意软件提供战略防御机制、解决网络犯罪、评估漏洞,以及产生主动而不是被动的对策的人工智能方法。
目錄
译者序序言前言第1章 网络空间安全中的网络本体语言:网络知识的概念建模111网络空间安全中的知识工程简介112网络空间安全分类标准413网络空间安全的核心参考本体模型614网络空间安全的上层本体615网络空间安全的领域本体8151入侵检测本体模型8152恶意软件分类和恶意软件行为本体模型8153网络威胁情报本体模型9154数字取证本体模型10155安全操作和流程本体模型11156描述网络攻击及其影响的本体模型1116网络空间安全的相关网络系统本体集1217总结14参考文献15第2章 推理型网络态势感知的网络语义知识表示1821引言1822预备知识1923通信网络的概念23231网络和拓扑结构24232网络接口和IP地址24233路由器25234自治系统和路由系统2624网络态势感知的形式化知识表示2825表示网络数据来源3326表示网络数据的不确定性3527表示网络数据的模糊性3828对网络态势感知的推理支持4029总结41参考文献41第3章 机器学习系统的安全性4531机器学习算法的脆弱性4532威胁模型46321攻击者能力产生的威胁47322攻击者目标产生的威胁48323攻击者知识产生的威胁49324攻击策略产生的威胁5033数据中毒52331投毒攻击场景53332投毒攻击56333投毒攻击的可传递性61334对投毒攻击的防御6334在测试中的攻击64341规避攻击场景66342规避攻击的计算69343规避攻击的可传递性70344对规避攻击的防御7235总结73参考文献74第4章 攻击前修补漏洞:一种识别目标软件脆弱性的方法7741引言7842相关工作8143预备知识82431有监督的学习方法82432漏洞利用预测面临的挑战8344漏洞利用预测模型85441数据源86442特征描述8845漏洞及利用分析90451漏洞利用可能性91452基于时间的分析91453基于供应商/平台的分析93454基于语言的分析9446实验设置95461性能评估96462结果9747对抗数据处理10348讨论10549总结107参考文献107第5章 人工智能方法在网络攻击检测中的应用11151引言11152相关工作11253二元分类器114531神经网络114532模糊神经网络118533支持向量机12354训练二元分类器以检测网络攻击126541计算和预处理网络参数127542二元分类器权重的遗传优化129543网络攻击检测算法13155组合多种二元分类器方案132551组合检测器的低层级方案132552聚合成分134553组合检测器的常用方法13656实验137561数据集137562实验1138563实验213957总结140参考文献141第6章 用于网络入侵检测的机器学习算法14461引言14462网络入侵检测系统146621部署方法146622检测方法14863网络入侵检测中的机器学习149631模糊推理系统150632人工神经网络156633基于机器学习的NIDS的部署16064实验161641评估环境161642模型构建162643结果对比16465总结165参考文献166第7章 使用机器学习技术进行Android应用程序分析17271引言17272Android应用程序包的结构174721中央配置(AndroidManifest.xml)174722Dalvik字节码(classes.dex)17573Android恶意软件识别技术176731黑名单176732参数化177733分类17774数据集准备178741APK文件分析178742应用程序元数据179743标签分类180744数据编码180745一种安全和恶意APK文件的新型数据集18175用SVM检测恶意软件182751SVM概述182752特征设置185753调整超参数185754评估指标186755数值结果18676与参数化方法比较188761扩展DroidRisk188762DroidRisk性能18977特征选择190771递归特征消除190772排序标准191773实验19278问题和限制19479总结195参考文献195
內容試閱
安全漏洞和被感染的计算机系统会让政府和企业遭受严重损失。 攻击机制与防御机制在不断地并行发展,要检测欺诈性支付网关,保护云服务以及让文件安全传输,需要不断发展新技术。为了尽可能地防止未来发生的网络攻击或至少将其影响小化,人工智能方法被用来抵御网络威胁和攻击。不断增加的全球网络威胁和网络攻击的数量促使人们迫切需要自动化防御机制来及时发现漏洞、威胁和恶意活动。知识表示和推理、自动化计划以及机器学习这些方法,有助于主动实现网络安全措施,而非被动实现。 为此,人工智能驱动的网络安全应用程序开始发展,相关信息可参阅基于AI的安全基础设施Chronicle系统(谷歌提供的云服务,可以用于企业保留、分析和搜索网络安全数据)和“企业免疫系统” Darktrace。日益复杂的网络、操作系统和无线通信漏洞,以及恶意软件行为给安全专家带来了别甚至国际级别的重大挑战。本书囊括了目前几乎所有AI技术驱动的安全技术和方法。第1章介绍了AI的本体工程及其在网络安全、网络威胁情报和网络态势感知等方面的应用。 本体中网络基础架构的概念、属性、关系和实体的正式定义使编写机器可解释的语句成为可能。这些语句可用于对专家知识进行有效的索引、查询和推理。第2章详细介绍了如何利用知识工程来描述网络拓扑和流量,以便软件代理可以自动处理它们并执行网络知识发现。网络分析人员往往使用多种来源的信息,除非使用统一的语法,否则软件代理无法有效地处理这些信息并将这些信息解释为易于理解的含义(例如模型理论语义和Tarski式解释)。网络知识的形式化表示不仅需要确定性的原理,有时还需要模糊的、概率性的原理以及元数据等作为来源。通过对语义丰富的网络知识进行推理,自动化机制可以生成即使是有经验的分析师也会忽略的关于相关性的非常规描述,并自动识别可能导致漏洞的错误配置。第3章告诉我们,人工智能不仅可以提供帮助,还可能对网络安全构成威胁,因为黑客也会使用AI方法,比如攻击机器学习系统以利用软件漏洞并破坏程序代码。举个例子,他们可能在机器学习算法中引入误导性数据(数据投毒),篡改算法的行为,导致电子邮件将数千封垃圾邮件标记为“非垃圾邮件”,从而使恶意电子邮件被视为正常邮件。社交媒体网站中提到的软件漏洞可以被软件供应商用来打补丁,也可以被对手在打补丁之前加以利用。第4章展示了软件漏洞发布和利用之间的相关性,并提出了一种基于在线资源预测漏洞被利用的可能性的方法,供应商可以使用这些资源(包括Dark Web和Deep Web)来优先安排补丁程序。第5章介绍了适用于检测网络攻击的AI方法。 它提供了二元分类器和优化技术,可以提高分类准确度、训练速度以及用于网络攻击检测的分布式AI驱动的计算效率。该章还描述了基于神经网络、模糊网络和进化计算的模型,以及二元分类器的组合策略,从而能够对不同子样本进行多种方式的训练。第6章讨论了利用机器学习和数据挖掘来识别恶意连接的入侵检测技术,比较了使用模糊逻辑和人工神经网络的常见入侵检测系统,并在此基础上总结了使用人工神经网络处理网络攻击的主要挑战和机遇。安全性的强弱取决于系统中薄弱的环节。不论企业采取了什么样的安全措施,一个粗心的或经验不足的用户足以破坏文件传输的安全性或违反企业安全策略进行登录。 例如,安装软件不仅可能导致系统感染恶意软件,还可能导致数据丢失、隐私泄露等。如第7章所述,人工智能可以用于分析软件安装程序的安全性,这一章中论述了基于机器学习的Android移动设备上用于分发和安装移动程序以及中间件的包文件格式的分析方法。利用机器学习算法对APK文件结构进行分析,可以识别潜在的恶意软件目标。网络分析师、防御专家、学生和网络安全研究人员都可以从本书中汇编的一系列AI方法中受益,这本书不仅回顾了目前的技术水平,还提出了这一快速发展的研究领域的新方向。Leslie F. Sikos博士于澳大利亚阿德莱德

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.