登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書

『簡體書』Python科学计算和数据科学应用(第2版) 使用NumPy、SciPy和matplotlib

書城自編碼: 3508291
分類:簡體書→大陸圖書→計算機/網絡程序設計
作者: [美]罗伯特·约翰逊[Robert,Johansson] 著
國際書號(ISBN): 9787302552802
出版社: 清华大学出版社
出版日期: 2020-06-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 261.4

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
危局
《 危局 》

售價:HK$ 84.0
穿裙子的士:叶嘉莹传
《 穿裙子的士:叶嘉莹传 》

售價:HK$ 53.8
财富方程式
《 财富方程式 》

售價:HK$ 77.3
知识社会史(下卷):从《百科全书》到“在线百科”
《 知识社会史(下卷):从《百科全书》到“在线百科” 》

售價:HK$ 99.7
我读巴芒:永恒的价值
《 我读巴芒:永恒的价值 》

售價:HK$ 132.2
你漏财了:9种逆向思维算清人生这本账
《 你漏财了:9种逆向思维算清人生这本账 》

售價:HK$ 55.8
我们终将老去:认识生命的第二阶段(比利时的“理查德·道金斯”,一位行为生物学家的老年有用论
《 我们终将老去:认识生命的第二阶段(比利时的“理查德·道金斯”,一位行为生物学家的老年有用论 》

售價:HK$ 91.8
谁是窃书之人 日本文坛新锐作家深绿野分著 无限流×悬疑×幻想小说
《 谁是窃书之人 日本文坛新锐作家深绿野分著 无限流×悬疑×幻想小说 》

售價:HK$ 55.8

 

建議一齊購買:

+

HK$ 183.5
《Python金融大数据分析 第2版》
+

HK$ 196.7
《机器学习实战:基于Scikit-Learn Keras和Te》
+

HK$ 83.8
《Python数据可视化之matplotlib实践》
+

HK$ 212.9
《Python数据可视化之美:专业图表绘制指南(全彩)》
+

HK$ 311.0
《Python学习手册(原书第5版)》
+

HK$ 261.4
《数据挖掘与预测分析(第2版)》
編輯推薦:
图书特色
◆ 使用NumPy处理数组和矩阵
◆ 使用matplotlib绘图和可视化数据
◆ 使用Pandas和SciPy进行数据分析
◆ 使用statsmodels和scikit-learn进行统计建模和机器学习
◆ 使用Numba和Cython优化Python代码
內容簡介:
《Python科学计算和数据科学应用第2版使用NumPy、SciPy和matplotlib》全面介绍Python在数值计算和数学领域的模块、标准库以及多个开源Python库,如NumPy、SciPy、FiPy、matplotlib等。在上一版的基础上,本书做了全面修订,更新了每个包的更新细节以及Jupyter项目的变化,演示了数值计算和数学建模在大数据、云计算、金融工程、商业管理等领域的应用。
本书提供了Python在数据科学和统计分析中很多新的应用示例,对上一版中的示例进行了扩展,每个示例都充分展示了Python的简洁语法及其数据分析方法在快速开发和探索性计算方面的强大功能。
通过阅读本书,读者将熟悉很多计算技术,包括基于数组的计算和符号计算、数据可视化和数值文件读写、方程求解、优化、插值和积分以及特定领域的计算问题,如微分方程求解、数据分析、统计建模和机器学习等。
關於作者:
作者简介
Robert Johansson是一位经验丰富的Python程序员和计算科学家,他拥有瑞典查尔斯理工大学理论物理学博士学位。他在学术界和工业界从事科学计算工作超过10年,既参与过开源项目的开发,也做过专有性研究项目的开发。在开源领域,他为QuTip项目做出了很多贡献,QuTip项目是一个很流行的用于模拟量子系统动力学的Python框架,他还为科学计算领域的其他几个Python库做出过贡献。Robert对科学计算和软件开发充满热情,并热衷于传授和交流这方面的最佳实践,以便能在这些领域取得最好的成果:新颖的、可重现的、可扩展的计算结果。Robert在理论物理和计算物理领域有5年的研究背景,目前他是IT行业的数据科学家。
译者简介
黄强,本科和硕士分别毕业于中山大学和中国科学院研究生院,目前在一家国有银行从事信息科技方面的工作。对信息技术的前沿发展及应用有着浓厚的兴趣,包括云计算、人工智能、金融科技等,翻译过多本技术专著。
目錄
第1章 科学计算介绍 1
1.1 Python数值计算环境 3
1.2 Python 4
1.3 IPython控制台 5
1.3.1 输入输出缓存 6
1.3.2 自动补全和对象自省Object Introspection 6
1.3.3 文档 7
1.3.4 与系统shell进行交互 7
1.3.5 IPython扩展 8
1.4 Jupyter 13
1.4.1 Jupyter QtConsole 13
1.4.2 Jupyter Notebook 14
1.4.3 Jupyter Lab 16
1.4.4 单元类型 16
1.4.5 编辑单元 17
1.4.6 Markdown单元 18
1.4.7 输出显示 19
1.4.8 nbconvert 22
1.5 Spyder集成开发环境 24
1.5.1 源代码编辑器 25
1.5.2 Spyder控制台 26
1.5.3 对象查看器 26
1.6 本章小结 26
1.7 扩展阅读 27
1.8 参考文献 27
第2章 向量、矩阵和多维数组 29
2.1 导入模块 30
2.2 NumPy Array对象 30
2.2.1 数据类型 31
2.2.2 内存中数组数据的顺序 33
2.3 创建数组 34
2.3.1 从列表和其他类数组对象创建数组 35
2.3.2 以常量填充的数组 35
2.3.3 以增量序列填充的数组 36
2.3.4 以等比数列填充的数组 37
2.3.5 Meshgrid数组 37
2.3.6 创建未初始化的数组 38
2.3.7 使用其他数组的属性创建数组 38
2.3.8 创建矩阵数组 38
2.4 索引和切片 39
2.4.1 一维数组 39
2.4.2 多维数组 41
2.4.3 视图 42
2.4.4 花式索引和布尔索引 43
2.5 调整形状和大小 45
2.6 向量化表达式 48
2.6.1 算术运算 49
2.6.2 逐个元素进行操作的函数 52
2.6.3 聚合函数 54
2.6.4 布尔数组和条件表达式 56
2.6.5 集合运算 59
2.6.6 数组运算 60
2.7 矩阵和向量运算 61
2.8 本章小结 66
2.9 扩展阅读 66
2.10 参考文献 66
第3章 符号计算 67
3.1 导入SymPy 67
3.2 符号 68
3.3 表达式 74
3.4 表达式操作 76
3.4.1 化简 76
3.4.2 展开 77
3.4.3 因式分解、合并同类项 78
3.4.4 分式分解、通分、消除公因子 79
3.4.5 替换 79
3.5 数值计算 80
3.6 微积分 81
3.6.1 导数 81
3.6.2 积分 83
3.6.3 级数展开 85
3.6.4 极限 86
3.6.5 和与积 87
3.7 方程 88
3.8 线性代数 89
3.9 本章小结 92
3.10 扩展阅读 93
3.11 参考文献 93
第4章 绘图和可视化 95
4.1 导入模块 96
4.2 入门 96
4.3 Figure对象 101
4.4 Axes实例 102
4.4.1 绘图类型 103
4.4.2 线条属性 103
4.4.3 图例 107
4.4.4 文本格式和注释 108
4.4.5 轴属性 110
4.5 Axes高级布局 119
4.5.1 图中图 119
4.5.2 plt.subplots 121
4.5.3 plt.subplot2grid 123
4.5.4 GridSpec 123
4.6 绘制色图 124
4.7 绘制3D图形 126
4.8 本章小结 128
4.9 扩展阅读 128
4.10 参考文献 129
第5章 方程求解 131
5.1 导入模块 131
5.2 线性方程组 132
5.2.1 方形方程组 133
5.2.2 矩形方程组 137
5.3 特征值问题 141
5.4 非线性方程 142
5.4.1 单变量方程 142
5.4.2 非线性方程组 149
5.5 本章小结 152
5.6 扩展阅读 152
5.7 参考文献 153
第6章 优化 155
6.1 导入模块 155
6.2 优化问题的分类 156
6.3 单变量优化 158
6.4 无约束的多变量优化问题 160
6.5 非线性最小二乘问题 167
6.6 受约束的优化问题 168
6.7 本章小结 175
6.8 扩展阅读 175
6.9 参考文献 176
第7章 插值 177
7.1 导入模块 177
7.2 插值概述 178
7.3 多项式 179
7.4 多项式插值 181
7.5 样条插值 185
7.6 多变量插值 188
7.7 本章小结 193
7.8 扩展阅读 193
7.9 参考文献 193
第8章 积分 195
8.1 导入模块 196
8.2 数值积分方法 196
8.3 使用SciPy进行数值积分 199
8.4 多重积分 204
8.5 符号积分和任意精度积分 208
8.6 积分变换 211
8.7 本章小结 214
8.8 扩展阅读 214
8.9 参考文献 214
第9章 常微分方程 215
9.1 导入模块 215
9.2 常微分方程 216
9.3 使用符号方法求解ODE 217
9.3.1 方向场 222
9.3.2 使用拉普拉斯变换求解ODE 225
9.4 数值法求解ODE 228
9.5 使用SciPy对ODE进行
数值积分 231
9.6 本章小结 242
9.7 扩展阅读 242
9.8 参考文献 243
第10章 稀疏矩阵和图 245
10.1 导入模块 245
10.2 SciPy中的稀疏矩阵 246
10.2.1 创建稀疏矩阵的函数 250
10.2.2 稀疏线性代数函数 252
10.2.3 线性方程组 252
10.2.4 图和网络 257
10.3 本章小结 264
10.4 扩展阅读 264
10.5 参考文献 264
第11章 偏微分方程 265
11.1 导入模块 266
11.2 偏微分方程 266
11.3 有限差分法 267
11.4 有限元法 272
11.5 使用FEniCS求解PDE 275
11.6 本章小结 293
11.7 扩展阅读 294
11.8 参考文献 294
第12章 数据处理和分析 295
12.1 导入模块 296
12.2 Pandas介绍 296
12.2.1 Series对象 296
12.2.2 DataFrame对象 299
12.2.3 时间序列 307
12.3 Seaborn图形库 317
12.4 本章小结 321
12.5 扩展阅读 322
12.6 参考文献 322
第13章 统计 323
13.1 导入模块 323
13.2 概率统计回顾 324
13.3 随机数 325
13.4 随机变量及其分布 328
13.5 假设检验 335
13.6 非参数法 339
13.7 本章小结 341
13.8 扩展阅读 341
13.9 参考文献 341
第14章 统计建模 343
14.1 导入模块 344
14.2 统计建模简介 344
14.3 使用Patsy定义统计模型 345
14.4 线性回归 352
14.5 离散回归 360
14.5.1 对数几率回归 361
14.5.2 泊松回归模型 365
14.6 时间序列 368
14.7 本章小结 372
14.8 扩展阅读 372
14.9 参考文献 372
第15章 机器学习 373
15.1 导入模块 374
15.2 机器学习回顾 374
15.3 回归 375
15.4 分类 384
15.5 聚类 388
15.6 本章小结 391
15.7 扩展阅读 392
15.8 参考文献 392
第16章 贝叶斯统计 393
16.1 导入模块 394
16.2 贝叶斯统计简介 394
16.3 定义模型 396
16.3.1 后验分布采样 400
16.3.2 线性回归 403
16.4 本章小结 413
16.5 扩展阅读 413
16.6 参考文献 413
第17章 信号处理 415
17.1 导入模块 415
17.2 频谱分析 416
17.2.1 傅里叶变换 416
17.2.2 加窗 421
17.2.3 频谱图 424
17.3 信号滤波器 427
17.3.1 卷积滤波器 428
17.3.2 FIR和IIR滤波器 429
17.4 本章小结 434
17.5 扩展阅读 434
17.6 参考文献 434
第18章 数据的输入输出 435
18.1 导入模块 436
18.2 CSV格式 436
18.3 HDF5 440
18.3.1 h5py库 441
18.3.2 PyTables库 451
18.3.3 Pandas HDFStore 455
18.4 JSON 456
18.5 序列化 460
18.6 本章小结 462
18.7 扩展阅读 462
18.8 参考文献 463
第19章 代码优化 465
19.1 导入模块 467
19.2 Numba 467
19.3 Cython 473
19.4 本章小结 482
19.5 扩展阅读 483
19.6 参考文献 483
附录 安装 485
內容試閱
科学计算和数值计算是科研、工程和分析方面的新兴领域。过去几十年来,信息科技行业的革命为其从业者提供了新的强大工具。这让计算工作能够处理前所未有的大规模和复杂性问题,所以整个领域和行业的应用如雨后春笋般涌现。这种进步还在持续,随着硬件、软件和算法的不断改进,该领域也正在创造新的机会。虽然这种技术进步的终极推手是最近几十年以来出现的拥有强大计算能力的硬件,但是,对于计算从业人员来说,计算工作的软件环境与硬件一样重要,甚至更为重要。《Python科学计算和数据科学应用第2版》介绍目前很流行并且快速增长的数值计算环境:由Python编程语言及其很多库组成的数值计算生态系统。
计算是一种跨学科的工作,需要在理论和实践方面都有丰富的专业知识和经验:扎实的数学基础和科学思维是计算工作的基本要求。另外,计算机编程和计算机科学方面的训练也同样重要。《Python科学计算和数据科学应用第2版》的目的就是通过介绍使用Python编程语言及相关的计算环境进行科学计算来连接理论和实践。《Python科学计算和数据科学应用第2版》假设读者已经接受过一些数学和数值方法的基本训练,并且掌握Python编程的基础知识。《Python科学计算和数据科学应用第2版》的重点是使用Python进行实际计算问题的求解。每章都会对该章涉及的理论知识做简单介绍,主要是为了向读者介绍相关的符号并回顾基本的方法和算法。但是,《Python科学计算和数据科学应用第2版》并不是数值方法的自洽介绍。为了帮助那些对《Python科学计算和数据科学应用第2版》某些章介绍的主题不太熟悉的读者,每章在最后都会给出扩展阅读。另外,如果读者没有Python编程经验,将《Python科学计算和数据科学应用第2版》与专门介绍Python编程语言的书一起阅读会很有用。
《Python科学计算和数据科学应用第2版》的组织方式
《Python科学计算和数据科学应用第2版》第1章将介绍科学计算的一般原理以及使用Python进行科学计算的主要开发环境,重点介绍IPython及其交互式Python命令行,还介绍优秀的Jupyter Notebook应用以及Spyder IDE。
在第2章,我们将介绍NumPy库,另外还将讨论基于数组的计算及其优点。在第3章,我们将关注使用SymPy库进行符号计算,符号计算在很多方面都是对基于数组的计算的补充。在第4章,我们将介绍使用matplotlib库进行绘图和可视化。第2~4章为我们提供了基本的计算工具:数值计算、符号计算、可视化,这些工具将在《Python科学计算和数据科学应用第2版》其余章节用于解决特定领域的问题。
第5章的主题是方程求解,将分别介绍如何使用SciPy和SymPy库的数值方法和符号方法。在第6章,我们将探讨优化问题,这是从方程求解自然延伸出来的。我们主要使用SciPy库,同时也会简单地使用cvxopt库。第7章主要介绍插值,插值是另外一种有很多应用的基本数学工具,在高级算法和方法中有着重要的作用。第8章将介绍数值积分和符号积分。第5~8章主要介绍所有计算工作中经常使用的核心计算技术,这几章的大部分方法都可以在SciPy库中找到。
第9章将介绍常微分方程。第10章将介绍稀疏矩阵和图论相关的方法,这些有助于为第11章做准备。第11章将讨论偏微分方程,偏微分方程虽然在概念上与常微分方程密切相关,但是需要使用不同的技术,需要用到第10章介绍的稀疏矩阵。
从第12章开始,我们的研究方向将转到数据分析和统计分析。在第12章,我们将介绍Pandas库及其优秀的数据分析框架。第13章将介绍基本的统计分析以及SciPy stats包中的相关方法。第14章将介绍使用statsmodels库进行统计建模。第15章将结合机器学习使用scikit-learn库继续讨论统计分析和数据分析。第16章是介绍统计分析的最后一章,将讨论贝叶斯统计和PyMC库。第12~16章介绍了统计分析和数据分析,它们也是近年来Python科学计算社区里迅速发展的重要领域。
第17章将简要回顾科学计算的另外一个核心领域:信号处理。第18章讨论数据的输入输出,以及多种读写数据文件的方法,这是大部分计算工作所必需的基本工具。第19章将介绍提速Python代码的两种方法:分别使用Numba和Cython库。
附录介绍《Python科学计算和数据科学应用第2版》中所使用软件的安装方法。我们可以使用conda包管理器来安装这些软件大部分是Python库。conda包管理器也可用来创建虚拟的、独立的Python环境,这对于创建稳定和可复制的计算环境非常重要。附录还讨论如何使用conda包管理器来处理这种环境。
源代码下载
《Python科学计算和数据科学应用第2版》的每章都将提供Jupyter Notebook,其中包含该章中所有的代码。这些Notebook及其代码运行所需的数据文件都可以从www.apress.com9781484242452下载,读者也可以通过扫描封底的二维码来下载。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.